DEPARTMENT OF THE INTERIOR ## U.S. GEOLOGICAL SURVEY Analyses and descriptions of geochemical samples, northeastern part of the Dahlonega gold belt and vicinity, northeastern Georgia by F. G. Lesure 1 , K. C. Watts 2 , J. L. Finley 2 , J.C. Jackson 1 , and C. A. Edwards 1 U.S. Geological Survey Open-File Report 91-362 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. - 1. Reston, Va. - 2. Denver, Colo. ## Contents | All local | page | |---|------| | Abstract | 1 | | Introduction | 1 | | Analytical techniques | 3 | | Sample descriptions | 5 | | Explanation of Table 2 | 39 | | References cited | 39 | | Illustrations | | | Figure 1. Index map | 2 | | Tables | | | Table 1. List of quadrangles from which samples were collected. | 3 | | Table 2. Analyses of rock and saprolite samples | 40 | | Table 3. XRF analyses of selected samples | 100 | ## Abstract Semiquantitative spectrographic analyses for 30 elements, atomic absorption analyses for gold, copper, lead, and zinc, colorimetric analyses for arsenic and molybdenum, and instrumental analyses for mercury on all or part of a sample suite of 879 rock and saprolite samples are reported here in detail. In addition, Energy Dispersive X-ray Fluorescence analyses for a selected suite of 14 trace elements made on 146 of the samples are also reported. Most of the samples are saprolite derived from mica schist and gneiss, amphibolite, and quartzite, or vein quartz in saprolite. Samples of vein quartz generally contain some enclosing country rock. Samples are from roadcuts, surface and underground mine workings, and mine dumps. Locations are given by quadrangle and latitude and longitude. Sixty-seven percent of the samples from old mine areas and 24 percent from roadcuts contain gold at a limit of determination of 0.02 parts per million (ppm). Half of the mine samples and three-fourths of the roadcut samples that contain detectable gold have less than 0.2 ppm. ## Introduction The analyses presented in this report are of 879 samples of rock and saprolite from the northeastern part of the Dahlonega gold belt and vicinity in northeastern Georgia (fig. 1 and table 1). The samples were collected by Lesure in October-November, 1966, March-April and October-November, 1967, and April, 1968, in a reconnaissance study as part of the U.S. Geological Survey (USGS) Heavy Metals Program. Some preliminary results were reported earlier (U.S. Geological Survey, 1968, p. 8; Kinkel and Lesure, 1968; Lesure, 1969a; 1969b; Lesure, 1971). The samples are described briefly in a separate section of this report. Most of the samples are chip composites taken across bedding or layering over a measured thickness of representative material from roadcuts or mine workings. A few are composite samples of rock from mine dumps. The samples are representative of the major rock types, mica gneiss and schist, quartzite, amphibolite, and vein quartz, exposed in the area sampled. Samples of vein quartz generally include some enclosing country rock. ² USGS, Denver, Colo. ¹ Reston, Va. ³ Listed in section on analytical techniques. Figure 1.-- Index map showing outline of the northeastern part of the Dahlonega gold belt and the location of quadrangles in which samples were collected. Quadrangles and identification codes for sample numbers are listed in table 1. The gold belt includes most but not all of the Helen thrust sheet of Nelson and others, 1989. Most of the samples are of weathered rock or saprolite. The freshest samples are generally from underground mine workings or mine dumps. Maps showing sample localities for the main part of the Dahlonega belt and discussion of the results of the analytical work are given by Lesure (in press). Table 1.-- List of quadrangles and some of the mines within the quadrangle from which samples were collected (See also fig. 1). $^{^{}m l}$ Quadrangle and quadrangle-mine identification code used in sample number. Number of samples. ## Analytical techniques Rock and saprolite samples were crushed to approximately 0.25-in. (6-mm) particle size and were pulverized to minus 140-mesh (0.004 in. or 0.105 mm) in a vertical grinder having ceramic plates. Most of the samples were analysed semiguantitatively for 30 elements by means of a six-step. D.C. (direct-current) arc, optical emission spectrographic method (Grimes and Marranzino, 1968) in USGS laboratories, Denver, Colo. (Table 2). One set of 313 samples was also analysed in USGS laboratories, Washington, D.C. and these results are also included (Table 2). The analysts and number of samples worked on by each are as follows: K. J. Curry (99 samples), J. L. Finley (414 samples), D. J. Grimes (11 samples), H. T. Hopkins (10 samples), E. E. Martinez (112 samples), J. M. Motooka (95 samples), H. G. Neiman (82 samples), G. W. Sears (51 samples) and K. C. Watts (428 samples). The semiquantitative spectrographic values are reported as six steps per order of magnitude (1, 0.7, 0.5, 0.3, 0.2, 0.15, or multiples of ten of these numbers) and are approximate midpoints of geometric brackets whose boundaries are 1.2, 0.83, 0.56, 0.38, 0.26, 0.18, 0.12, etc. The expected precision is within one adjoining reporting interval on each side of the reported value 83 percent of the time and within two adjoining intervals 96 percent of the time (Motooka and Grimes, 1976). The visual lower limits of determination for the 30 elements that were determined spectrographically are as follows: | Calciu
Iron | | | n percent:
Magnes
Titan | | 0.02
0.002 | | |---|---|--|--|--|---------------|---| | Antimony
Arsenic
Barium
Beryllium
Bismuth
Boron
Cadmium
Chromium | For those g
100
200
10/20
1
10
10
20
5
5 | iven in parts Copper Gold Lantanum Lead Manganese Molybdenum Nickel Niobium Scandium | per million
5
10
20
10
10
5
5 | (ppm): Silver Strontiu Tin Tungsten Vanadium Yttrium Zinc Zirconiu | l | 0.5
100
10
50
10
10
200 | Nearly half of the samples were analysed twice for gold using similar methods but different detection limits. P. J. Aruscavage, F. W. Brown, and C. L. Burton analysed a set of 390 samples for gold in the USGS laboratories, Washington, D.C., using a combined fire assay - atomic absorption technique. The same sample set was analysed in the USGS laboratories, Denver, Colo., by W. L. Campbell, R. L. Miller, M. S. Rickard, T. A. Roemer, and T. M. Stein using an atomic absorption technique described by Thompson and others, 1968. They also analysed an additional 290 samples for gold, including 135 done originally in a mobile laboratory by G. W. Dounay and T. G. Ging, Jr. The remaining samples were analysed for gold by atomic absorption methods by G. L. Chlumsky (12 samples), Luther Dickson and M. S. Rickard (14 samples), F. G. Frisken (9 samples), S. I. Hoffman (24 samples), E. E. Martinez (38 samples), A. L. Otsuka (51 samples), and M. S. Rickard (56 samples). The samples were analysed for copper, lead, and zinc by atomic absorption techniques (Ward and others, 1969) by R. L. Miller (390 samples), M. S. Richard, E. E. Martinez, G. W. Dounay, and T. G. Ging, Jr. (135 samples), S. L. Noble and Luther Dickson (38 samples), Luther Dickson (77 samples), Z. C. Stephenson (56 samples), and J. R. Hassemer (19 samples). W. W. Janes (38 samples) and S. L. Noble (89 samples) analysed for mercury using instrumental methods. Some of the samples were also analysed for arsenic by colorimetric methods in the USGS laboratories, Denver, Colorado, by J. G. Viets and B. A. Russell (390 samples), J. G. Frisken, S. G. Meyers, and E. K. Ragsdale (51 samples), A. L. Meier and C. O. Hershey (38 samples), S. G. Meyers (24 samples), C. O. Hershey (12 samples) and Z. C. Stephenson (2 samples). A few of the samples were also analysed for molybdenum by thiocyanate or colorimetric methods by H. D. King (65 samples) and J. R. Hassemer (10 samples). About 155 samples were analysed for copper, lead, zinc, arsenic and molybdenum by Skyline Labs, Inc., Wheat Ridge, Colo., under contract to the Geological Survey. J.C. Jackson analysed a set of 146 samples of mostly mica schist saprolite for 14 trace elements by Energy Dispersive X-Ray Fluorescence methods (XRF) in USGS laboratories, Reston, Va. (Table 3). C. E. Edwards formatted the analytical data by computer methods for tables 2 and 3. # Sample descriptions - Aversville quadrangle - AY1 0.3 m chip sample, saprolite, light-gray, derived from quartz-feldspar-biotite gneiss. - AY2 0.15 m chip sample, quartz-feldspar-biotite gneiss, light-gray, fine-grained, trace of muscovite, garnet, and iron-sulfide. - AY3 0.3 m chip sample, saprolite, pale- to moderate-yellowish brown, derived from quartz-feldspar-mica gneiss, fine-grained; two quartz veins 1 cm thick, iron-stained. - AY4 0.6 m chip sample, saprolite, pale-yellowish-brown, derived from quartz-feldspar-mica schist, trace garnet. - AY5 1 m chip sample, saprolite, very-pale-orange, sandy, derived from feldspathic quartzite, minor mica. - 1 m chip sample, saprolite, very-pale-orange to pinkish-gray, derived from feldspathic quartzite, fine- to medium-grained. - AY7 1 m chip sample, saprolite, yellowish-brown, derived from hornblende schist (?). - AY8 0.6 m chip sample, saprolite, light-brown, derived from muscovite-quartz-feldspar schist, medium- to coarse-grained. - Buford Dam quadrangle - BD1 0.6 m chip sample, saprolite, light-brown, derived from quartz-feldspar-mica gneiss,
medium- to coarse-grained. - BD2 1 m chip sample, saprolite, olive-gray to moderate-yellowish-brown, derived from feldspar-quartz-mica gneiss and schist, fine- to medium-grained. - BD3 1 m chip sample, saprolite, brown, soft, derived from mica schist. - BD4 0.3 m chip sample, quartzite, base of unit. - BD5 0.3 m chip sample, mica-sillimanite(?)-garnet schist, reddish-brown, weathered, 0.6 m below sample BD4. - BD6 0.6 m chip sample, quartzite, friable, weathered, iron-stained. - BD7 1 m chip sample, saprolite, reddish-purple, derived from sillimanite-mica-graphite schist, above and below sample BD6. - BD8 1 m chip sample, saprolite, reddish-purple, derived from sillimanite-mica-graphite schist. - BD9 0.3 m chip sample, quartzite, white to yellow, weathered, friable, base of unit. - Campbell Mountain quadrangle - CMO1 0.3 m chip sample, saprolite, fine-grained, derived from mica schist. - CMO2 0.3 m chip sample, saprolite, derived from mica-garnet schist, contains zone rich in thin quartz stringers. - CMO3 1 m chip sample, saprolite, derived from mica-garnet schist. Garnets 0.5-1 cm. - CMO4 1 m chip sample, hornblende schist, minor vein quartz and iron sulfides. - CM06 1 m chip sample, hornblende schist, contains iron sulfide. - CM13 1 m chip sample, muscovite schist, very fine-grained. - CM14 1 m chip sample, muscovite-quartz schist and quartz, weathered, granular; minor magnetite(?). - CM17 1 m chip sample, quartz-muscovite schist, very fine-grained, weathered, granular. - CM18 Composite sample of granular quartz. - CM22 1 m chip sample, mica schist and thin quartz veins. - CM44 1 m chip sample, saprolite, medium-grained, derived from feldsparquartz-mica gneiss or granitic gneiss. - Campbell Mountain quadrangle northeastern cut of Barlow mine - CM46 1 m chip sample, mica schist, weathered, minor quartz stringers and limonite coatings. - CM47 1 m chip sample, mica schist, two quartz veins, 2-5 cm thick, weathered. - CM48 1 m chip sample, saprolite, light-brown, clayey, derived from hornblende schist; minor quartz veins. - Campbell Mountain quadrangle Boston cut - CM53 Composite sample, two quartz veins, 2-4 cm thick. - CM54 0.6 m chip sample, mica schist, country rock from area of sample CM53. - CM55 1 m chip sample, saprolite, gray; derived from interlayered mica gneiss and schist. - Campbell Mountain quadrangle - CM60 0.6 m chip sample, saprolite, light-brown, derived from interlayered mica schist and quartz-mica gneiss, minor quartz lenses. - CM61 1 m chip sample, saprolite, pale-red to reddish-purple, very fine-grained, derived from quartz-mica schist. - CM62 Composite sample, quartz vein, 1-10 cm thick, concordant with foliation of country rock. - CM63 l m chip sample, saprolite, tan to grayish-orange, fine- to medium-grained, derived from feldspar-mica-quartz-garnet schist. - CM64 0.6 m chip sample, saprolite, olive-drab to moderate-yellowish brown, medium-grained, derived from muscovite schist. - CM65 1 m chip sample, saprolite, light-brown; derived from mica-garnet schist containing layers and boudin of mafic schist or amphibolite. - CM66 Composite sample, four quartz veins, 2-5 cm thick, concordant with foliation in mica schist. - CM67 1 m chip sample, saprolite, pale-red, derived from mica-garnet schist, fine-grained. - CM68 Composite sample, four quartz veins, 1-15 cm thick. - Chestatee quadrangle - CE1 1 m chip sample, saprolite, yellow, sandy, derived from coarsegrained quartzite. - CE2 1 m chip sample, saprolite, reddish-brown, sandy, derived from quartzite. - Cleveland quadrangle - CLO1 1 m chip sample, quartzite, greenish-gray to black, thin layered, weathered. - CLO2 1 m chip sample, muscovite schist, fine- to medium-grained, weathered, interlayered with quartzite of CL1. - CLO5 1 m chip sample, saprolite, variegated, derived from mica schist and minor small quartz veins. - CL09 1 m chip sample, saprolite, greenish-gray, sandy, derived from quartz-feldspar(?)-biotite gneiss, very fine-grained. - CL12 1 m chip sample, saprolite, light- to medium-gray, derived from migmatitic mica schist. Sample mostly migmatitic layers. - CL14 1 m chip sample, saprolite, reddish-brown, clayey, minor quartz stringers. - CL15 1 m chip sample, saprolite, reddish-brown, derived from mica schist and minor quartz veins 0.5-5 cm thick. - CL16 1 m chip sample, saprolite, derived from muscovite-biotite schist and some quartz-feldspar gneiss layers, migmatitic. - CL17 1 m chip sample, feldspar-quartz-mica gneiss, granitic gneiss, sheared, weathered, minor epidote. - CL18 0.5 m chip sample, saprolite, derived from quartz-feldspar-mica gneiss and schist. - CL19 I m chip sample, quartz-epidote-hornblende(?) granulite, partly weathered, fine-grained, minor garnet, 1-2 mm. - CL20 1 m chip sample, saprolite, reddish-brown to tan, derived from quartz-feldspar-mica gneiss. - CL22 I m chip sample amphibolite, dark gray, very fine-grained, mostly hornblende and feldspar, at least one 1-cm-thick quartz vein containing iron sulfides. - CL23 1 m chip sample, quartz-biotite-muscovite-feldspar(?) gneiss, medium-gray, fine-grained, minor quartz seams 1-4 mm thick, weathers to gray, sandy saprolite. - CL24 1 m chip sample, saprolite, thin layered, derived from interlayered medium-grained mica schist and fine-grained hornblende schist(?). - CL25 1 m chip sample, saprolite, yellowish-green to tan, very fine-grained, derived from quartz-feldspar-mica gneiss interlayered with muscovite schist and minor quartz veins, 0.5-2 cm thick. - CL26 1 m chip sample, muscovite schist, weathered. - CL27 1 m chip sample, quartz-feldspar-mica gneiss, light-gray, very fine-grained. - CL28 1 m chip sample, muscovite-biotite-quartz schist, minor quartz veins and iron sulfides. - CL29 Composite of several quartz-calcite veins from sample CL28. - CL33 1 m chip sample, saprolite, derived from biotite-muscovite schist, coarse-grained. - CL34 1 m chip sample, saprolite, grayish-tan, derived from muscovitebiotite schist. - CL35 1 m chip sample, saprolite, derived from muscovite-biotite schist and minor thin quartz veins. - CL36 1 m chip sample, saprolite, derived from muscovite-biotite schist, medium- to coarse-grained, contains minor quartz veins. - CL37 1 m chip sample, muscovite-biotite-quartz schist, medium-gray, minor iron sulfides and thin quartz seams. - CL38 1 m chip sample, quartz-feldspar-mica gneiss, medium-light-gray, very fine-grained, minor coarse-grained pyrite in quartz vein along joint. - CL40 1 m chip sample, saprolite, derived from muscovite-biotite schist, coarse-grained. - CL42 1 m chip sample, quartz-mica schist, yellowish-gray, fine-grained, weathered. - CL45 1 m chip sample, interlayered biotite schist and quartz-biotite gneiss, olive-gray, weathered. - CL46 I m chip sample, saprolite, olive-gray to greenish-black, derived from interlayered coarse-grained crinkled mica schist and quartz-mica gneiss. - CL48 1 m chip sample, saprolite, moderate yellow-brown, derived from mica schist. - CL51 1 m chip sample, saprolite, reddish-brown, derived from quartz-mica schist. - CL55 1 m chip sample, saprolite, derived from interlayered mica and hornblende schists, minor quartz veins 0.5-5 cm thick. - CL56 1 m chip sample, saprolite, greenish-gray, sandy, derived from sheared gneiss(?), minor quartz veins 1 cm thick. - CL57 1 m chip sample, mica-garnet schist, moderate-yellow-brown, medium-grained, weathered, minor quartz lenses 1-2 cm thick. - Coal Mountain quadrangle - CMT01 1 m chip sample, mica-garnet-quartz schist, grayish-orange, garnets 1-10 mm. - CMTO2 1 m chip sample, metagraywacke or quartz-biotite gneiss, lightto medium-gray, fine-grained, laminated, minor garnet. - CMTO3 0.3 chip sample, saprolite, yellowish-tan, friable, derived from quartzite. - CMT04 0.3 chip sample, quartzite, friable, weathered, medium-grained. - CMT05 1 m chip sample, saprolite, friable, derived from quartzite with thin dark layers. - CMT06 1 m chip sample, quartzite, grayish-orange-pink to moderate-pink, coarse-grained, contains limonite after pyrite(?), and minor muscovite. - CMTO7 1 m chip sample, saprolite, reddish-purple, derived from mica-sillimanite-garnet schist, graphitic. - CMT08 1 m chip sample, saprolite, tan to orange, sandy, derived from quartzite. - CMT09 0.6 m chip sample, saprolite, derived from mica schist below sample CMT10. - CMT10 1 m chip sample, quartzite, tan, weathered, friable. - CMT11 0.3 m chip sample, quartzite, tan, friable, weathered. - CMT12 1 m chip sample, quartzite, sheared, minor hematite. - CMT13 0.3 m chip sample, saprolite, derived from granite layer in schist. - CMT14 0.3 m chip sample, saprolite, derived from muscovite-biotite schist, coarse-grained. ## Cowrock quadrangle - 1 m chip sample, saprolite, moderate-yellow-brown, very fine-grained, derived from quartz-mica-garnet schist. - 1 m chip sample, saprolite, variegated yellow, red, and tan, very fine-grained, derived from quartz-mica schist. - 1 m chip sample, saprolite, yellowish-tan, derived from quartz-mica schist, migmatitic. - 1 m chip sample, saprolite, light-brown to olive gray, fine-grained, derived from mica schist and abundant quartz veins 1-15 cm thick. - 1 m chip sample, saprolite, variegated gray, tan, and orange, finegrained, derived from quartz-mica gneiss; interlayered with schist of sample C11. - 1 m chip sample, saprolite, light-gray to tan, sandy, very fine-grained, derived from quartz-feldspar-biotite gneiss and minor quartz-biotite schist. - 1 m chip sample, saprolite, light-brown, derived from quartz-mica schist containing numerous small quartz pods and lenses. - 1 m chip sample, saprolite, light-gray, derived from interlayered muscovite schist and quartz-mica gneiss, medium-grained, thin-layered. - 1 m chip sample, saprolite, light-gray, derived from quartz-biotite gneiss, very fine-grained. - I m chip sample, quartz-feldspar-biotite gneiss, medium-light-gray, very fine-grained, trace of iron sulfides. - 1 m chip sample, saprolite,
moderate-yellowish-brown, derived from mica schist, coarse-grained. - 1 m chip sample, saprolite, yellowish-white, derived from quartz-feldspar-mica gneiss. - C21 1 m chip sample, saprolite, pale red, derived from mica schist. - 1 m chip sample, saprolite, light-yellowish-brown, sandy, derived from quartz-feldspar gneiss(?). - 1 m chip sample, saprolite, moderate-yellowish-brown, derived from interlayered quartz-feldspar-biotite gneiss and schist. - C30 Composite sample quartz vein, 15 cm thick, minor limonite after iron-sulfides. - 0.6 m chip sample, saprolite, moderate-yellowish-brown, derived from interlayered biotite schist and quartz-biotite gneiss; minor quartz lenses 0.5-5 cm thick. - 1 m chip sample, quartz-biotite-muscovite-garnet schist and quartz-biotite-garnet gneiss, limonite-stained. - 1 m chip sample, saprolite, light brown, derived from interlayered mica schist and quartz-mica gneiss. - 1 m chip sample, hornblende gneiss, dark gray, coarse-grained, minor quartz, biotite, and iron sulfides. - C36 I m chip sample, saprolite, moderate-yellowish-brown, derived from mica schist containing five quartz veins 0.5-2 cm thick. - 1 m chip sample, saprolite, yellowish-gray to very pale-orange, derived from quartz-feldspar-mica gneiss, thin-layered. - 1 m chip sample, saprolite, yellowish-gray, sandy, contains four quartz veins 1-5 cm thick, discordant. - 1 m chip sample, saprolite, moderate brown, derived from mica-garnet schist, medium- to coarse-grained. # Cumming quadrangle - CUO1 0.3 m chip sample, quartzite, friable, weathered. - CU02 0.3 m chip sample, quartzite, weathered. - CU03 0.6 m chip sample, saprolite, derived from mica schist, minor sillimanite, garnet, and graphite. - CU04 0.3 m chip sample, quartzite, very pale-orange, friable, weathered, coarse-grained, base of unit sampled. - CU05 0.6 m chip sample, quartzite. - CU06 1 m chip sample, saprolite, reddish-brown, derived from mica schist, minor quartz lenses 1 cm thick. - CU07 0.3 m chip sample, quartzite, white, weathered. - CU08 0.3 m chip sample, quartzite, porous, limonite stained, weathered. - CU09 0.3 m chip sample, quartzite, near base of section in small quarry. - CU10 1 m chip sample, saprolite, yellow, sandy, derived from quartzite. - CUII 1 m chip sample, saprolite, porous, sandy, limonite stained, derived from medium-grained feldspathic quartzite. - CU12 1 m chip sample, saprolite, tan, sandy, derived from quartzite. - CU13 1 m chip sample, quartzite, light-tan. - CU14 1 m chip sample, saprolite, reddish-purple, derived from quartz-mica schist. - CU15 1 m chip sample, saprolite, brown, sandy, derived from quartz-mica schist. - CU16 1 m chip sample, quartzite, lower part sampled. ## Dahlonega quadrangle - D001 1 m chip sample, saprolite, light-brown, clayey, derived from horn-blende-feldspar gneiss. - D002 0.6 m chip sample, saprolite, dusky- to grayish-brown, manganese-stained, derived from fine-grained quartz-garnet-magnetite schist. - D003 0.6 m chip sample, saprolite, pink, clayey, derived from mica schist(?). - D004 0.6 m chip sample, quartzite, brown to black, weathered. - D005 Composite sample, quartz vein, sheared, manganese stained, in quartzite of sample D004. - D006 0.6 m chip sample, saprolite, grayish-orange to pale brown, friable, very fine-grained, derived from quartz-garnet(?)-magnetite-feldspar(?)mica schist interlayered with mica-quartz-garnet schist, medium-grained. Layering 0.5-2 cm. - D007 0.6 m chip sample, saprolite, variegated tan, orange, and reddishbrown, derived from quartz-feldspar-mica gneiss, fine-grained. - D008 0.6 m chip sample, saprolite, light-brown to variegated, fine-grained, soft, derived from mica-feldspar(?)-quartz schist. - D009 I m chip sample, saprolite, light-olive-gray, sandy, very fine-grained, derived from quartz-feldspar-biotite-carbonate(?)-sulfide(?) schist. - D010 1 m chip sample, saprolite, olive-gray, derived from quartz-mica-garnet schist, fine-grained. - DO11F 0.3 m chip sample, quartz-feldspar-biotite-hornblende(?)-garnet schist, fine-grained. - DO11S 0.3 m chip sample, saprolite, yellowing-light-olive-gray, friable, fine-grained, derived from schist of sample D11F. - D012 0.6 m chip sample, saprolite, olive-gray, friable, derived from biotite-quartz-feldspar-garnet schist, fine- to medium-grained, garnets 1-2 mm. - D013 0.3 m chip sample, saprolite, yellowish-gray to grayish-brown, very fine-grained, friable, derived from quartz-feldspar-mica-garnet-magnetite schist. - D014 0.6 m chip sample, saprolite, grayish-orange to olive-gray, fine-grained, derived from mica-quartz-garnet schist, garnet 0.5-2 mm. - 0.6 m chip sample, quartz-muscovite-biotite-feldspar(?)-garnet schist, light-olive-gray, very fine-grained, weathered. - D016 0.6 m chip sample, quartz-biotite schist, light-olive-gray, very fine- to fine-grained. Accessory garnet, iron sulfide, sphene, and calcite. - D017 0.3 m chip sample, biotite-muscovite-quartz schist, minor iron sulfides, fine-grained. - D018 0.3 m chip sample, saprolite, to partly weathered, quartz-mica-garnet schist, light-olive-gray, fine-to medium-grained. Garnet porphyroblasts 1-4 mm. - D019 1 m chip sample, saprolite, light-gray to grayish-orange, fine-grained, friable, derived from feldspar-quartz-biotite-muscovite gneiss. - DO21 I m chip sample, saprolite, light-brown, derived from hornblende schist. - DO22 1 m chip sample, saprolite, derived from quartz-feldspar gneiss, interlayered with sample DO21. - D023 1 m chip sample, saprolite, derived from feldspar-quartz-mica gneiss, medium-grained. - D024 0.6 m chip sample, quartz-muscovite-biotite schist, light-olivegray, weathered, in part to saprolite, very fine-grained, layered, 1-2 mm quartz-rich layers and 1-2 mm mica-rich layers. - D025 1 m chip sample, saprolite, grayish-pink, very fine-grained, friable, clayey, derived from feldspar-quartz granulite, minor muscovite and magnetite(?). - D026 3 m chip sample, saprolite, light-brown, derived from hornblende-feldspar schist. - D027 1 m chip sample, saprolite, dark-yellowish-brown, fine-grained, friable, derived from quartz-muscovite-biotite-garnet schist. - D028 1 m chip sample, granite, white, weathered. - D031 1 m chip sample, saprolite, light-yellowish-orange, derived from muscovite schist, coarse-grained, minor quartz lenses. - D032 1 m chip sample, saprolite, grayish-orange, derived from quartz-feldspar-mica gneiss, very fine-grained, trace garnet(?) - D034 1 m chip sample, saprolite, moderate-yellowish-brown, derived from muscovite schist and minor small quartz veins. - D036 1 m chip sample, quartz-feldspar-hornblende gneiss, light- to medium-gray, medium- to coarse-grained. - D037f 1 m chip sample, quartz-feldspar-hornblende gneiss, light-gray to greenish-black, fine- to coarse-grained, partly weathered. Minor biotite and chlorite. Feldspars altered in part to zoisite? - D037w 1 m chip sample, saprolite, light-yellowish-brown, derived from quartz-feldspar-hornblende gneiss. - D038 1 m chip sample, saprolite, variegated gray, yellow, tan and red, derived from mica schist. - D039 1 m chip sample, saprolite, moderate-yellowish-brown, derived from quartz-mica gneiss, minor mafic schist layers 2 cm thick. - D043 I m chip sample, saprolite, light-olive-gray, very fine-grained, friable, derived from quartz-biotite-muscovite-feldspar(?) schist. - D044 1 m chip sample, saprolite, moderate-yellowish-brown, clayey, derived from mica schist, very fine-grained. - D046 1 m chip sample, saprolite, strong-yellowish-brown, derived from hornblende schist, very fine-grained. - D052 1 m chip sample, saprolite, light-brown, derived from mica-garnet schist, garnet 4-8 mm. - D056 1 m chip sample, saprolite, moderate-yellowish-brown, derived from mica-garnet schist, medium- to coarse-grained. - D059 1 m chip sample, saprolite, weak-orange, derived from interlayered muscovite schist and quartz-mica gneiss. - D063 1 m chip sample, saprolite, weak-yellowish-orange, derived from mica schist, very fine-grained, minor thin quartz veins. - D067 1 m chip sample, saprolite, moderate-yellowish brown, derived from hornblende gneiss, minor quartz veins. - D068 1 m chip sample, saprolite, light-brown, derived from mica schist and quartz-mica gneiss, minor quartz stringers. - D069 1 m chip sample, saprolite, weak-brown, derived from micaceous quartzite, manganese-stained, minor vein quartz. - D071 1 m chip sample, saprolite, weak-red, derived from interlayered coarse-grained mica schist and fine-grained quartz-mica gneiss. - D074 1 m chip sample, saprolite, variegated tan and brown, derived from mica schist, very fine-grained. - D075 1 m chip sample, saprolite, light-brown, derived from mica-quartz schist, very fine-grained. - D077 1 m chip sample, saprolite, weak-brown, derived from quartz-mica schist, laminated. - D079 1.3 m chip sample, quartz vein, barren. - DO80 1 m chip sample, saprolite, variegated black, red, and tan in layers 0.1-.6 m thick; derived from mica schist, fine-grained. - D080a composite sample of quartz vein from area of sample D080, 2-5 cm thick. - D081 1 m chip sample, saprolite, moderate-yellowish-brown; derived from mica-garnet schist, garnet 1-10 mm, abundant in layers 6-9 m thick. - D082 1 m chip sample, saprolite, light-brown, derived from mica-garnet schist, fine-grained. - D085 Composite sample, eight quartz veins, 1-5 cm thick, in mica-garnet schist saprolite. - D089 1 m chip sample, saprolite, weak-yellowish-orange, derived from sheared quartzite(?). - D096 1 m chip sample, quartzite and quartz-biotite schist, light-medium-gray, fine-grained, minor iron-sulfides. - D098 Composite sample quartz-mica schist from Tahloneka mine dump. - D099 Composite sample sheared hornblende schist, contains iron-sulfides from dump of Tahloneka mine. - D103 1 m chip sample, saprolite, greenish-gray to dark-yellowish-orange, derived from mica schist containing minor quartz stringers. - D104 Composite sample, quartz veins and stringers in 8 m area. - D113
Composite sample, quartz lenses, 2-5 cm thick, 5-15 cm long - 1 m chip sample, saprolite, moderate-brown, derived from quartz-mica schist and quartzite, fine-grained; wall rock of quartz lenses of sample D113. Represents material mined in northeast cuts of Findley mine. - D115 0.6 m chip sample from back of adit, magnetite quartzite containing minor quartz stringers, weathered. Findley mine. - Samples D119-D125 from Garnet mine, Lumpkin County. - D119 1 m chip sample of saprolite, derived from mica-garnet schist. - D122 1 m chip sample, saprolite, light-brown, derived from mica schist containing quartz stringers, 4-8 mm thick. - D123 Composite sample of quartz vein, 2-10 cm thick, in mica schist saprolite. - D124 Composite sample of quartz vein, sheared, 0.3 m thick. - D125 1 m chip sample, saprolite, light-yellowish-brown, derived from mica schist, wall rock of sample D124. - D127 1 m chip sample, biotite meta-trondhjemite, light- to yellowish-gray, fine-grained, porphyritic. - D128 1 m chip sample, mica-garnet schist, medium-grained, weathered. - 1 m chip sample, saprolite, pale-reddish-brown, derived from interlayered medium-grained mica schist and fine-grained quartzite, minor quartz lenses. - D137 1 m chip sample, saprolite, light-gray, sandy, derived from sheared quartzite(?) and minor quartz lenses. - D139 Composite sample, quartz vein, 15 cm thick, minor limonite after pyrite, from Crisson mine area. - D140 1 m chip sample, saprolite, moderate orange-pink, derived from granite(?); wallrock for sample D139. - D150 1 m chip sample, saprolite, moderate-yellowish-brown, derived from hornblende schist, thin-layered. - D151 1 m chip sample, hornblende schist, dark-gray, partly weathered. - D152 1 m chip sample, saprolite, derived from layered gneiss and quartz stringers. - D153 1 m chip sample, saprolite, very pale-orange, derived from gneissic granite, cut by minor quartz veins. - D155 Composite sample gossan from Chestatee mine, moderate brown. - D160 1 m chip sample, saprolite, grayish-orange, derived from interlayered mica schist and gneiss, abundant quartz stringers. - D166 1.3 m chip sample, saprolite, light-brown, derived from hornblende schist, minor quartz veins 1-15 cm thick not included, from back of caving adit. - D167 Composite sample, quartz vein, 5-15 cm thick, sheeted, from area of sample D166. - D191 1 m chip sample, quartzite, white to grayish orange, fine-grained, feldspathic, weathered. - D195 2.4 m chip sample, saprolite, moderate-yellowish-brown, derived from quartz-mica schist, minor quartz veins. - D196 0.6 m chip sample, saprolite, light-brown, sandy, manganese stains, derived from quartz-mica schist, fine-grained. - D197 2 m chip sample, saprolite, similar to sample D196, minor quartz veins. - D198 1.3 m chip sample, saprolite, similar to sample D196. - D199 1.3 m chip sample, saprolite, similar to D196. - D200 1.3 m chip sample, saprolite, dark-yellowish-brown, sandy, manganese stain derived from mica schist(?). - D201 1.3 m chip sample, saprolite, pale-brown, sandy, manganese stain, derived from mica schist, minor quartz veins 2 cm thick. - Dahlonega quadrangle Bast Cut - DB1 0.6 m chip sample, saprolite, orange-brown, clayey, fine-grained, derived from a mafic gneiss or schist(?). - DB2 0.6 m chip sample, saprolite, gray-brown, sandy, fine-grained, derived from quartz-mica schist. - DB3 0.3 m chip sample, quartz vein, fractured, manganese stain. - DB4 1 m chip sample, hornblende-feldspar schist, olive-gray, partly weathered, lineated. - DB5 Composite sample, quartz vein, 10 cm thick, in hornblende schist saprolite. - DB6 1 m chip sample, saprolite, orange-brown, clayey, derived from hornblende schist. Sample from both walls of DB5 quartz vein. - DB7 0.6 m chip sample, quartzite, light-gray, very fine-grained, weathered; accessory magnetite and carbonate mineral(?). - Dahlonega quadrangle, Crown Mountain mine - DCMO1 1 m chip sample, saprolite, light-brown, clayey, derived from hornblende schist. - DCM02 1 m chip sample, saprolite, brownish-gray, interlayered clayey and sandy, manganese stained, derived from quartz-feldspar(?)-mica schist(?). - DCM03 1 m chip sample, saprolite, mottled very pale-orange and dark-yellowish-brown, very fine-grained, sandy, derived from quartz-mica schist, laminated, minor magnetite and garnet. - DCMO4 1 m chip sample, saprolite, light-brown, clayey, derived from hornblende schist. - DCMO5 0.3 m chip sample, saprolite, dark-brown to black, sheared. - DCM06 1.3 m chip sample, saprolite, variegated, tan and brown, sheared, clayev. - DCMO7 Composite sample, 1 cm thick seam of granular quartz stained with brownish-black manganese oxides. - DCMO8 0.6 m chip sample, quartzite, mottled light gray, grayish-orange-pink and dark-gray, very fine-grained. Accessory magnetite and garnet. - DCM09 0.6 m chip sample, saprolite, variegated, red and black, clayey. - DCM10 Composite sample, quartz vein, 0.5-5 cm, iron and manganese oxide stains. - DCM11 1.6 m chip sample, saprolite, reddish-brown, clayey, minor quartz stringers including DCM10. - Dahlonega quadrangle, Crown Mountain road - DCMT01 1 m chip sample, saprolite, mottled yellowish-gray and dark-brown, thin-layered, friable, very fine-grained, manganese-stained, derived from quartz-mica schist. - DCMT02 1 m chip sample, colluvium, red clay, vein-quartz and quartzite pebbles, magnetite sand, hematite-goethite nodules. - DCMT04 Composite sample, quartz vein, 0.3 m thick, crosscutting layering in country rock. - DCMT05 1 m chip sample, saprolite, yellowish-tan, very fine-grained, derived from quartz-feldspar(?)-mica schist or quartzite. - DCMT06 1 m chip sample, quartzite, dark brown, weathered, fine-grained, accessory magnetite, 1-2 cm quartz stringers crosscut foliation. - DCMT07 1 m chip sample, saprolite, mottled yellow and black, very fine-grained manganese-stained, derived from quartz-mica schist. - DCMT08 Composite sample of colluvium in road. - DCMT09 Composite sample of colluvium in road. - DCMT10 Composite sample of colluvium in road. - DCMT11 1 m chip sample, saprolite, yellowish-tan, very fine-grained, sandy, manganese-stained, derived from micaceous quartzite. - DCMT12 1 m chip sample, saprolite, dark-yellow-orange to brown, clayey, derived from hornblende schist. - DCMT13 1.3 m chip sample, quartz-vein, partly concordant to foliation. - DCMT14 1 m chip sample, saprolite, brownish-black, sandy, thin-layered, very fine-grained, derived from quartzite. - DCMT15 Composite sample, quartz vein in quartzite, abundant limonite after pyrite. - DCMT15A Composite sample vein quartz and quartzite, mottled black and orange. - Dahlonega quadrangle Findley mine - DF01 0.3 m chip sample, hornblende schist, olive-gray to olive-black, dark-yellow-orange, partly weathered, in part saprolite, mostly acicular hornblende(?), fine-grained. - DF02 2 m chip sample, saprolite, light-brown, speckled pale-yellowishorange, clayey, derived from medium-grained(?) hornblendefeldspar gneiss. - DF03 1 m chip sample, saprolite, grayish-orange to olive-drab, clayey, derived from a mafic(?) mica schist or amphibolite schist. - DF04 1 m chip sample, saprolite, brown to olive-gray, very fine-grained, derived from interlayered mafic schist and quartz-feldspar-magnetite schist(?). - DF05 0.3 m chip sample, saprolite. - DF06 0.6 m chip sample, saprolite, dusky-brown, fine-grained, clayey, derived from feldspar-mica-quartz-garnet(?)-magnetite schist(?). - DF07 2 m chip sample, saprolite, dusky-brown, fine-grained, brittle, derived from quartz-mica-garnet-magnetite schist. - DF08 0.6 m chip sample, quartzite, weathered, manganese stained. - DF09 0.3 m chip sample, saprolite, olive-drab, clayey, fine-grained; derived from mica schist. - DF10 1.6 m chip sample, saprolite, dark-gray, manganese-stained, fine-grained; derived from mica schist. - DF11 Composite sample of several quartz stringers, 2-10 cm thick, poorly exposed zone. - DF12 Composite sample quartz stringers and mica schist saprolite in poorly exposed zone. - DF13 Composite sample quartz vein, 1-3 cm thick, 0.6 m long, crosscutting. - DF14 0.6 m chip sample, quartz-muscovite-biotite schist, grayish-orange-pink to dark-yellowish brown, very fine-grained, weathered; minor magnetite. - DF15 0.6 m chip sample, saprolite, derived from mica schist and minor quartz stringers. - DF16 0.6 m chip sample, vein quartz, minor muscovite and iron oxide stain. - DF17 1.3 m chip sample, saprolite, derived from mica schist and vein quartz. - DF18 1.3 chip sample, quartz vein, sheared. - DF19 2.6 m chip sample, quartz-muscovite schist, pale-red to grayish-orange-pink, weathered, very fine-grained. May have contained a carbonate, now orange to red clay-coated spots. - DF20 1.6 m chip sample, mica schist and quartz veins, weathered. Schist, brown, sandy, some manganese stain. Quartz vein 2.5 cm thick. Note: Two analyses reported as DF20. The second one appears to be the correct one. The first one may be mislabeled. - DF21 1.3 m chip sample, mica schist, yellowish-brown, weathered, minor quartz veins. - DF22 1.3 m chip sample, mica schist, weathered. - DF23 2.6 m chip sample, saprolite, derived from mica schist. - DF24 0.6 m chip sample, quartzite, white to light-gray, very fine-grained, weathered, ganular, sheared and lineated; minor magnetite. - DF25 2 m chip sample, saprolite, speckled light-brown and pale-yellowish-brown, clayey, derived from hornblende-feldspar gneiss. - DF26 1 m chip sample, saprolite, dark-greenish-gray to yellowish-orange red, fine-grained, clayey, derived from a sheared rock, possibly a mylonite. - DF27 1 m chip sample, quartzite, light- to medium-gray, very fine-grained, accessory magnetite. - DF28 1 m chip sample, saprolite, pale-yellowish-brown, derived from quartz-muscovite-magnetite schist. - DF29 Composite sample of zone 5-15 cm thick of muscovite-biotite-garnet-chlorite schist, weathered, garnet 0.5-3 mm, minor iron sulfides. - DF30 Composite sample, quartz vein, 2-10 cm
thick, 1 m long. - DF31 1.3 m chip sample, quartz vein, minor iron sulfides and limonite. Garnet-rich schist along wall of vein. - DF32 1 m chip sample, quartzite, grayish red, weathered, very fine-grained, accessory garnet, mica, and feldspar. - DF33 1.3 m chip sample, mica schist and thin quartz veins, weathered. - DF34 1 m chip sample, saprolite, light brown, clayey, derived from hornblende schist. - DF35 1.3 chip sample, saprolite, variegated, brown, gray, black and orange, sandy. - DF36 Composite sample of two quartz veins; 15 cm thick, crosscut foliation. - DF37 Composite sample, quartz vein, 15-25 cm thick, white, granular. - DF38 0.3 m chip sample, interlayered, very fine-grained quartz-mica schist and medium-grained biotite-quartz-garnet schist. - DF39 Composite sample, quartz vein, 15 cm thick, contains accessory pyrite. - Dahlonega quadrangle, Fishtrap cuts - DFT1 Composite sample, quartz vein, 5-8 cm thick, accessory limonite after iron sulfides. - DFT2 1 m chip sample, saprolite, reddish-brown, clayey. - DFT3 Composite sample, quartz veins in zone 0.3 m thick. Goethite on outer edges. - DFT4 1 m chip sample, saprolite, variegated, clayey, from both walls of sample DFT3. - Dahlonega quadrangle Hand mine - DH01 Composite sample, quartz pod, abundant limonite after pyrite. - DH02 1 m chip sample, saprolite, fine-grained meta-trondhjemite(?). - DH03 0.3 chip sample, shear zone in meta-trondhjemite and mica schist, minor quartz lenses. - DH04 1 m chip sample, shear zone in quartzite, white to light-gray or pinkish-gray, accessory muscovite, iron sulfides and carbonate mineral(?), very fine-grained. - DH05 0.5 m chip sample, quartzite, shear zone(?). - DH06 0.8 m chip sample, quartzite, white to light-gray, shear zone(?), accessory muscovite, chlorite, and iron sulfides, partly weathered. - DH07 1 m chip sample, biotite schist, hanging wall of sample DH06. - DH09 0.6 m chip sample, biotite schist, between samples DH04 and DH05. - DH11 Composite sample, quartz vein, 2-5 cm thick. - DH12 1 m chip sample, saprolite, greenish-gray, fine- to medium-grained, iron-stained, derived from mica schist. From hanging wall of DH11. - DH13 1.6 m chip sample, meta-trondhjemite, very pale-orange to pale-yellowish brown. - DH14 I m chip sample, saprolite, dark-greenish-gray, sandy, derived from quartz-mica schist, medium-grained. - DH16 0.3 m chip sample, saprolite, derived from meta-trondhjemite. - DH17 1 m chip sample, saprolite, sheared, derived from meta-trondhjemite on trend of mineralized vein of Knight incline. - Dahlonega quadrangle, Ivey Cut - DI01 Composite sample, quartz-chlorite-hornblende-calcite-pyrite schist, green, sheared. - DIO2 Composite sample, sheared rock and vein quartz. - DIO3 Composite sample, sheared rock without vein quartz. - DI05 Composite sample, quartz vein, more than 1.3 m thick, white, may have had accessory calcite. - DIO6 1 m chip sample, saprolite, sheared, derived from interlayered hornblende schist and quartz-mica schist(?). - DIO7 Composite sample, quartz vein and saprolite wallrock. - DIOS 0.6 m chip sample, saprolite, variegated, clayey, derived from mica schist(?). - Dahlonega quadrangle Lockhart mine - DL1 1 m chip sample, saprolite, brownish-black, even-layered, very fine-grained, derived from quartz-muscovite schist and quartzite. - DL2 Composite sample of quartz vein, 2-15 cm thick, minor muscovite and limonite after pyrite, especially along vein walls. - DL3 Composite sample, quartz lens, 2-10 cm thick, 30 cm long, minor limonite after pyrite. - DL4 1 m chip sample, saprolite, dark-gray to brown, thin-layered, very fine-grained, derived from quartz-mica-magnetite schist. - DL5 1 m chip sample, saprolite, dark-gray, sandy, very fine-grained. Derived from quartz-mica schist and quartzite. - DL6 1 m chip sample, quartzite, dark-gray, very fine-grained accessory muscovite and coarse-grained iron sulfides. - DL7 1 m chip sample, quartzite, limonite after iron sulfides. - DL8 Composite sample, quartz lens, limonite after iron sulfides. - DL9 Composite sample from mine dump, biotite-hornblende-garnet schist, dark-gray, abundant large, 0.5-1 cm, garnet, late iron sulfides cut garnets. Some quartz-biotite-garnet schist layers. Dahlonega quadrangle, Preacher cut - DP01 1 m chip sample, saprolite, quartz-stringer zone in quartz-mica schist. - DP02 1 m chip sample, saprolite, pale-yellowish-gray, very fine-grained, derived from quartz-muscovite-magnetite schist, laminated, accessory carbonate mineral(?). - DP03 Composite sample, quartz vein, 10-20 cm thick, manganese and iron stained. - DP04 1 m chip sample, saprolite, pale-reddish-brown to grayishorange, fine-grained, derived from quartz-feldspar-mica schist. - DPO5 1 m chip sample, saprolite, mottled moderate-brown and paleyellowish-orange, fine-grained, derived from quartz-feldsparmica schist. - DP06 1 m chip sample, saprolite, grayish-brown, friable, fine-grained, sandy, derived from quartz-mica schist, minor 2 cm quartz stringers, crosscutting. - DP07 1 m chip sample, saprolite, variegated, fine-grained, derived from quartz-mica schist and minor quartz stringers. - DP08 1 m chip sample, saprolite, brownish-orange, sandy. - DPO9 1 m chip sample, saprolite, dark-yellowish-brown, very fine-grained, laminated, derived from quartz-feldspar(?)-carbonate(?)-mica schist. - DP10 1 m chip sample, saprolite, dark-brownish-gray, sandy, thin layered, friable. - DP11 Composite sample, quartz lens, 15 cm thick, concordant, fractured, manganese stained. - DP12 1 m chip sample, saprolite, light brown, fine-grained, some manganese stain, derived from quartz-mica schist. - DP13 Composite sample, quartz vein, 5-15 cm thick, fractured, white, granular quartz, some manganese stain. - DP14 I m chip sample, saprolite, dark-brown, fine-grained, sandy, manganese-stain, derived from quartz-mica schist. Dahlonega quadrangle - Singleton cut - DS1 Composite sample, quartz lens, 0.3 m thick. - DS2 1 m chip sample, quartz-feldspar(?)-biotite-muscovite gneiss, light-gray, spotted yellowish brown, fine-grained, laminated. - DS3 Composite sample, quartz-mica schist, pinkish-gray, minor carbonate and pyrite. Dawsonville quadrangle - Samples DA001-DA002, Gordon Cut mine - DA001 Composite sample of amphibolite saprolite and vein quartz. Quartz vein 15 cm thick and 1.6 m long. - DA002 1 m chip sample of saprolite, light brown, derived from amphibolite, contains minor quartz veins 1-5 cm thick. Same locality as DA001. - DA004 1 m chip sample saprolite, light-brown, fine-grained, derived from quartz-feldspar-hornblende(?)-mica gneiss(?). - DA006 1 m chip sample, saprolite, light-brown, derived from hornblendefeldspar-quartz schist, minor iron-sulfides, medium-grained. - DA007 Composite sample of one quartz vein, 10 cm thick, minor limonite after iron sulfides(?). From area of sample DA006. - DA008 Composite sample, vein quartz, moderate-yellowish-brown, in amphibolite saprolite of DA009. - DA009 1 m chip sample, saprolite, moderate brown, derived from amphibolite. - Samples DA010-DA013, Ralston Cut mine - DA010 1 m chip sample, saprolite, pale-red, very fine-grained, derived from quartz-mica schist(?). Sample contains three quartz veins 0.5-5 cm thick. - DA011 1 m chip sample, saprolite, pale-yellowish-brown, derived from a shear zone(?) in quartz-feldspar-mica schist (?) and amphibolite. Contains some 2 cm thick quartz lenses. - DA012 1 m chip sample, saprolite, light-brown, soft clayey, derived from amphibolite. - DA013 1 m chip sample, saprolite, moderate-orange-pink, clayey, minor quartz lenses, derived from quartz-feldspar-mica schist(?). - DA015 I m chip sample, saprolite, light-brown, derived from amphibolite, minor quartz lenses. - DA016 1 m chip sample, saprolite, light brown, derived from sheared(?) quartz-mica schist(?), and minor vein quartz. - DA017 1 m chip sample, saprolite, light-brown, derived from quartz-mica schist containing munerous quartz veins 1-2 cm thick. - DA020 1 m chip sample, saprolite, light-brown, derived from quartz-mica schist containing minor quartz veins 15 cm thick. - DA021 3 m chip sample, iron-rich quartz-mica schist, brownish- to darkgray, fine-grained, weathered. Much of iron is now limonite, some may be magnetite. Small prospect pit. - DA022 0.3 m chip sample of gossan, light-brown, along foliation of schist similar to sample DA021. - DA024 Composite sample, quartz-biotite-garnet schist, olive-gray, fine-grained, garnet, red, poikiloblastic, 1-5 mm, minor iron sulfides. Dump of Pollard tunnel. - DA025 Composite sample, quartz-garnet vein in quartz-biotite schist, dump of Pollard tunnel. - Samples DA028-DA032, Battle Branch mine - DA028 0.6 chip sample, saprolite, light-brown, derived from quartz-mica schist containing one quartz vein, 5 cm thick. - DA029 Composite sample, quartz vein, 0.6-1 m thick, contains garnet along wall. - DA030 1.3 m chip sample, saprolite, moderate-yellowish-brown, finegrained, derived from quartz-mica schist. - DA031 I m chip sample, saprolite, moderate-yellowish-brown, derived from quartz-mica schist containing a quartz vein 3-10 cm thick. - DA032 Composite sample of quartz vein of sample DA031. - Samples DA037 and 038 from adit on Whim Hill. - DA037 Composite sample of several quartz lenses in back of adit in saprolite of sample DA038. - DA038 1 m chip sample, saprolite, moderate brown, derived from amphibolite(?). In back of adit. - Samples DA042 DA055 from Hedwig cut. - DA042 Composite sample of several quartz lenses in mica schist saprolite. - DA043 1 m chip sample, saprolite, dark-yellowish-orange, derived from mica schist. - DA044 1 m chip sample, saprolite, light-brown, derived from amphibolite. - DA045 Composite of quartz vein, 2-5 cm thick in amphibolite saprolite, crosscuts layering in amphibolite. - DA046 2.7 m chip sample, saprolite, light-brown, derived from very finegrained guartz-feldspar(?)-mica schist, rare 0.5 cm guartz veins. - DA047 3 m chip sample, saprolite, light-brown, derived
from similar schist in DA046. - DA048 3 m chip sample, saprolite, light-brown, same as DA047 and DA046. - DA049 3 m chip sample, saprolite, same as DA046-DA048. - DA050 2 m chip sample, saprolite, moderate-orange-pink, similar to DA046-DA049. - DA051 Composite of four quartz veins from area of sample DA050. - DA052 4 m chip sample, saprolite, light-brown, similar to DA046-DA050. - DA053 Composite of four quartz veins from area of sample DA052. - DA054 3 m chip sample, saprolite, light-brown, derived from interlayered hornblende and mica schist(?). - DA055 7 m chip sample, saprolite, moderate-orange-pink, similar to DA046-DA050. - DA067 Composite sample vein quartz in hornblende schist of sample DA068. - DA068 3 m chip sample, saprolite, light-brown, derived from hornblende schist. - DA069 2 m chip sample, saprolite, light-brown, derived from interlayered hornblende schist and mica schist(?). - DA070 2 m chip sample, saprolite, light-brown, derived from mica schist(?). - DA071 2 m chip sample, saprolite, light-brown, derived from mica schist(?); sample includes two quartz veins, 2.5 cm thick. - DA072 2 m chip sample, saprolite, light-brown, derived from mica schist(?); sample includes one quartz vein, 5 cm thick. - DA073 Composite sample, vein quartz, 10 cm thick, in saprolite of sample DA072. - DA074 1.3 m chip sample, saprolite, light brown, derived from interlayered mica and hornblende schist(?). - DA075 Composite sample of quartz vein, 0.3 m thick. - DA076 1.3 chip sample, saprolite, moderate-reddish-brown, derived from mica schist and includes three quartz veins, 0.5 to 5 cm thick. - DA077 1.6 chip sample, saprolite, light-brown, derived from hornblende schist. - DA078 1.6 chip sample, saprolite, moderate-reddish-orange, derived from mica schist. - DA079 5 m chip sample, saprolite, light-brown, derived from hornblende schist. - DA080 Composite sample of three quartz veins, 5-10 cm thick, from area of sample DA079. - DA081 2 m chip sample, saprolite, moderate-reddish-orange, derived from mica schist. - DA086 1 m chip sample, quartz-mica-pyrite schist, grayish-orange, weathered. - DA087 1 m chip sample, quartz-muscovite-pyrite schist, grayish-orangepink, fine-grained, partly weathered, minor quartz veins, 2-5 cm thick. - DA088 1 m chip sample, quartz-muscovite-pyrite schist, very pale-orange, fine-grained. - DA089 Composite sample, quartz vein, 2-10 cm thick, iron-stained, gravish-orange. - DA090 Composite sample, quartz vein, 2-5 cm thick, contains pyrite and limonite after pyrite. - Samples DA093-DA095 Battle Branch mine, Gayden shaft - DA093 0.3 chip sample, saprolite, light-brown, derived from mica schist and thin quartz veins, in old shaft. - DA094 0.3 chip sample, mica schist, pale-yellowish-brown, no quartz veins, above sample DA093. - DA095 1 m chip sample, mica-garnet schist, moderate-yellowish-brown, weathered, garnet is coarse-grained; sample contains two quartz veins, 2-5 cm thick. - DA099 1 m chip sample, saprolite, moderate-yellowish-brown, mediumgrained, derived from mica-garnet schist. - DA102 I m chip sample, saprolite, light-brown, derived from mica schist. - DA110 0.6 m chip sample, saprolite, soft, clayey, derived from garnetmica schist, contains one quartz vein, 2 cm thick. - DAlll 1 m chip sample, saprolite, reddish-brown, sandy, derived from quartz-mica gneiss. - DA112 1 m chip sample, mica schist, coarse-grained, weathered, minor quartz lenses, 0.5-1 cm thick. - DA113 1 m chip sample of saprolite, pale red, fine-grained, derived from quartz-feldspar-mica schist. - DA114 Composite sample of three quartz veins, 2-15 cm thick, white, minor tourmaline in one, from schist of sample DA113. - DA115 1 m chip sample, saprolite, light-brown, sandy, derived from quartz-mica schist. - DAll6 1 m chip sample, amphibolite, minor vein quartz lenses, dark-greenish-gray, weathering moderate-yellowish-brown, fine-grained, schistose, deeply weathered. - DA117 1 m chip sample, saprolite, moderate-brown, fine-grained, sandy, derived from quartz-mica schist or gneiss, one quartz lens 2-3 cm thick. - DAll8 1 m chip sample, saprolite, dark-yellowish-brown to olive-gray, fine-grained, sandy, derived from quartz-mica-garnet schist, garnets red, as much as 4 mm across, euhedral; abundant 0.5 cm thick quartz seams. - DA119 1 m chip sample, quartz-mica-garnet schist, very-pale-orange, weathered to moderate-yellowish-brown, fine-grained; garnets as much as 3 mm in diameter. Minor quartz lenses 0.5-1 cm thick. - DA120 0.6 m chip sample, saprolite, light-brown, fine-grained, derived from mica-quartz-garnet schist. - DA121 Composite sample of four quartz veins, white to pale-yellowish-orange, 5-15 cm thick. Veins concordant to discordant to layering in schist country rock. - DA122 1 m chip sample, saprolite, pinkish- to brownish-gray, medium-grained, derived from mica-quartz-garnet schist and minor quartz stringers. - DA123 1 m chip sample, saprolite, light brown, fine-grained, derived from mica schist. - DA124 Composite of four quartz veins, white to grayish-red, 1-5 cm thick, in schist of DA123. - DA125 1 m chip sample, saprolite, grayish-orange-pink to very pale-orange, fine-grained, soft, derived from quartz-mica schist. - DA126 1 m chip sample, saprolite, very pale-orange, very fine-grained, derived from mica-quartz schist, minor pyrite(?) - DA127 1 m chip sample, saprolite, derived from very fine-grained mica-quartz schist. - DA128 Composite sample of five quartz veins, 1-8 cm thick, white, gray, and very pale-orange, granular. In schist of sample DA127. - DA129 0.6 m chip sample, quartz-feldspar(?) gneiss, grayish-orange, weathered, sheared. Possibly a calc-silicate(?). Gold Hill mine area. - DA130 0.3 chip sample, quartz vein, very pale-orange to white, 0.3 m thick minor limonite along vein margin. Gold Hill mine area. - Samples DA131-DA137 from Etowah mine - DA131 1 m chip sample, saprolite, gray-tan, clayey, derived from mica schist. Sample is country rock above vein of sample DA132. - DA132 Composite sample, vein quartz, white to light-gray, granular. Vein in shaft area, Etowah mine. - DA133 Composite sample of several quartz veins, brownish-gray, 1-3 cm thick, 0.6 m above quartz vein of sample DA132. - DA134 0.6 m chip sample, saprolite, moderate-yellowish-brown, fine-grained, derived from quartz-mica schist from above sample DA133. - DA135 1 m chip sample, saprolite, olive-gray, fine-grained, derived from mica-feldspar-quartz-garnet schist. Minor tourmaline. - DA136 1 m chip sample, saprolite, light-gray to light-olive-brown, derived from quartz-feldspar-mica-garnet schist, fine-grained, interlayered with mica-garnet-kyanite schist. - DA137 Composite sample of four quartz veins, 1-3 cm thick in schist of sample DA136. - DA138 O.6 m chip sample, saprolite, light-olive-gray, very fine-grained, derived from interlayered biotite-quartz schist and quartz-biotite schist. - DA139 1 m chip sample, saprolite, grayish-orange, derived from very fine-grained quartz-muscovite schist. - DA140 Composite sample of three quartz veins, 23 cm thick and several quartz seams 0.5 cm thick in saprolite of sample DA139. Quartz white to grayish-orange. - Samples DA141-DA147 from Betz mine. - DAI41 1 m chip sample, saprolite, grayish-orange, soft, sandy, fine-grained, derived from quartz-mica schist. - DA142 Composite of fine quartz lenses, 1-3 cm thick, 0.3-1 m long, in a zone 15 cm thick in center of sample DA141. - DA143 1 m chip sample, saprolite, pale-yellowish-brown, soft, sandy, very fine-grained, derived from quartz-muscovite-biotite schist. - DA144 Composite sample of zone of schist saprolite and quartz veins about 0.6 m below sample DA143, schist saprolite similar to DA143, vein quartz white to light gray, contains minor limonite after pyrite. - DA145 0.6 m chip sample, saprolite, very-pale-orange, soft, papery, sandy, very fine-grained, derived from quartz-muscovite-biotite schist. - DA146 Composite sample of three quartz veins, each 5 cm thick in schist of sample DA145. Quartz, white, minor limonite after pyrite. - DA147 2 m chip sample, saprolite and vein quartz, saprolite, pale-yellowish-brown, fine-grained, soft, sandy, derived from quartz-muscovite-biotite schist. Sample 0.6 m below sample DA145. 1/3 quartz, 2/3 schist(?). - Samples DA148-DA161 from Topabri or Josephine mine. - DA148 0.6 m chip sample, saprolite, pale-yellowish-brown to moderate-brown, possibly derived from interlayered calc-silicate gneiss and biotite schist, fine-grained. - DA149 Composite of four quartz veins in upper part of same DA148, quartz white to grayish-orange, minor limonite stain. - DA150 0.6 m chip sample, feldspathic quartzite, pinkish-gray, fine-grained, sheared, contains minor pyrite and calcite, partly weathered. - DA151 1.3 m chip sample, saprolite, moderate-yellowish-brown, fine-grained, derived from hornblende-feldspar-quartz schist. - DA152 0.6 m chip sample, saprolite and vein quartz, moderate-yellowishbrown, derived from interlayered biotite and hornblende schist. Four 0.5-3 cm thick quartz veins included in sample. - DA153 Composite sample of quartz lenses and seams, 2-15 cm thick in zone 0.6 m thick in mica-schist saprolite. - DA154 0.3 chip sample, saprolite, light-brown, fine-grained, derived from hornblende-feldspar schist. Below zone of sample DA153. - DA155 0.3 chip sample, colluvium light-brown, fine-grained, mostly pieces of hornblende-feldspar schist saprolite. - DA156 0.6 m chip sample, saprolite, pale-yellowish-brown, fine-grained, sandy, derived from quartz-feldspar-biotite gneiss. - DA157 Composite sample of quartz vein, white to grayish-orange, 20 cm thick, from middle of sample DA156, contains minor pyrite and limonite after pyrite. - DA158 1.3 m chip sample, saprolite, moderate-yellowish-brown, derived from feldspar-hornblende(?) gneiss. - DA159 Composite of three quartz veins, 2-10 cm thick, from sample DA158. [Analysed only for gold, 0.2 ppm; copper, 86 ppm; lead, 68 ppm, molybdenum, 2 ppm; and zinc 330
ppm.] - DA160 1 m chip sample, saprolite, moderate-yellowish-brown, derived from hornblende-feldspar-mica schist and gneiss. Minor iron sulfides. - DA161 Composite of three quartz veins, 1-8 cm thick, minor limonite after pyrite. - DA162 0.3 m chip sample, saprolite, grayish-brown, fine-grained, derived from quartz-feldspar(?)-mica schist, thin and even foliation. - DA163 0.3 m chip sample, saprolite, light-brown, medium-grained, derived from quartz-mica-garnet schist, garnets red and as much as 5 mm across. - DA164 1 m chip sample, saprolite, light-brown, medium-grained, derived from quartz-muscovite-garnet schist, garnets red and as much as 5 mm across. - DA165 Composite of four quartz veins, 2-5 cm thick, in sample DA164. Quartz, white to light gray, some yellowish-gray stain. - DA166 O.6 m chip sample, saprolite, pale-reddish-brown, fine-grained, derived from quartz-feldspar-mica schist. - DA167 Composite sample of five quartz veins 0.5-1 cm thick in 2 m of mica-schist saprolite including sample DA166. Quartz white to light gray. - DA168 0.6 m chip sample, saprolite, moderate-yellowish-brown, derived from quartz-mica-garnet schist. Garnets as much as 5 mm in diameter. - DA169 Composite sample of four quartz veins, 1 cm thick, in 6 m of schist saprolite including sample DA168. - DA170 1 m chip sample, saprolite, light-gray, tan, and orange-brown, very fine-grained, soft, clayey, derived from muscovite-biotite-quartz schist. - DA171 Composite sample of four quartz lenses, 2-8 cm thick, white to light gray from 3 m of schist saprolite. - DA172 1 m chip sample, saprolite, light-gray to light-brown, very fine-grained. Derived from mica-quartz-garnet schist. Garnet as much as 4 mm across. - DA173 Composite sample, three quartz veins, 15 cm thick, in schist saprolite. - DA174 1.3 m chip sample, saprolite, pale-reddish-brown, very fine-grained, derived from quartz-mica schist. - DA175 0.6 m chip sample, saprolite, pale-yellowish-orange, very fine-grained, derived from muscovite-quartz-garnet schist. Garnet, red, and as much as 0.6 cm across. - DA176 0.3 m chip sample, quartzite or calc-silicate, light-brown to grayish-orange, weathered. - DA177 O.6 m chip sample, saprolite, pale-yellowish-orange to yellowish-gray, very fine-grained, derived from mica-quartz-garnet schist. Garnet as much as 0.3 cm across. Abundant thin quartz lenses. - DA178 1 m chip sample, saprolite, yellowish-gray, fine-grained, derived from mica-quartz-garnet schist. Garnet as much as 0.3 cm across. Minor seams of vein quartz. - DA179 1 m chip sample, saprolite, moderate brown, fine-grained, derived from interlayered mica schist, calc-silicate, and mafic schist. Minor seams of vein quartz. - DA180 0.6 m chip sample, saprolite, very-pale-brown to pale-yellowishorange, medium-grained, derived from muscovite-biotite-quartz schist. - DA181 Composite sample of two saprolite granite sills in mica schist, 0.1-0.3 m thick. Quartz-feldspar-mica granite, fine-grained. - DA182 Composite of six quartz veins in 10 m of mica schist. - DA183 O.6 m chip sample, saprolite, olive-gray to pale-yellowish-brown, fine-grained, derived from mica-quartz-garnet schist. Garnet as much as 0.2 cm across. - DA184 Composite of three quartz veins in 6 m of mica schist. Sample contains minor amounts of schist wallrock. - DA186 O.6 m chip sample, quartz-biotite-muscovite-garnet schist, light-brownish gray, light brown spots after a carbonate(?) mineral, fine-grained. Biotite in scaly clusters. - DA187 0.5 m chip sample, saprolite, pale-yellowish-brown to moderate brown, fine-grained, derived from quartz-mica-garnet schist similar to sample DA186. - DA188 Composite sample of five quartz veins, 1-5 cm thick in 1.3 m of schist, white to light-gray, some iron stain. Minor amount of biotite along vein walls. - DA189 2 m chip sample, quartz-biotite-muscovite-garnet schist, darkyellowish-brown to medium-gray, fine-grained. Garnets, red, 0.1 cm. - DA190 0.3 m chip sample, quartz-mica-pyrite schist, pale-red to light-brown, very fine-grained, weathered, nearly saprolite. - DA191 1 m chip sample, quartz-mica-pyrite schist, pale-red to moderatebrown, very fine-grained, weathered, nearly saprolite. - DA192 0.3 m chip sample, quartz-mica-pyrite schist, grayish-orange-pink to reddish brown, very fine-grained, weathered, nearly saprolite. - DA193 Composite sample of several boulders, quartz-mica-pyrite schist, grayish-orange-pink to reddish-brown, very fine-grained, weathered, nearly saprolite. - DA194 1 m chip sample, quartz-mica-kyanite-pyrite schist, moderate brown, very fine-grained, weathered, nearly saprolite. All pyrite oxidized to limonite. - DA195 Grab sample of soil, light-brown, clayey and stoney, derived from quartz-mica-kyanite-pyrite schist. - DA196 Grab sample of soil and saprolite, light-brown, derived from quartz-mica-kyanite-pyrite schist. - DA197 1 m chip sample, quartz-mica-pyrite schist, pale-red, very fine-grained, weathered, nearly saprolite. Pyrite oxidized to limonite. - DA198 1 m chip sample, quartz-mica-pyrite schist, pale-red, very fine-grained, weathered, nearly saprolite. Pyrite oxidized to limonite. - DA199 2.4 m chip sample, mica-quartz-pyrite schist, medium-light- to medium-dark-gray, very fine-grained. - DA200 Composite sample of limonite along fracture in mica-quartz-pyrite schists, moderate-brown, fine-grained. - DA201 2 m chip sample, quartz-muscovite-kyanite(?)-pyrite schist, yellowish- to pinkish-gray, fine-grained, partly weathered. - DA202 1 m chip sample, biotite-quartz-muscovite-garnet schist, medium-light- to medium-dark-gray, medium-grained. Garnet, red, 1 mm in diameter - DA203 1.2 m chip sample, quartz-muscovite-kyanite(?)-pyrite schist, same as DAB201. - DA204 6 m chip sample, quartz-muscovite-kyanite(?)-pyrite schist, similar to DAB201 except more and better crystallized pyrite. - DA205 2 m chip sample, quartz-muscovite-kyanite-pyrite schist, similar to DAB204, minor amount of chalcocite, partly weathered. - DA206 3 m chip sample, quartz-muscovite-kyanite-pyrite schist, similar to DAB204. - DA207 3.3 m chip sample, quartz-muscovite-kyanite-pyrite schist, similar to DAB204. - DA208 4.3 m chip sample, quartz-muscovite-kyanite-staurolite-pyrite schist similar to DA4204. - DA209 1.6 m chip sample, quartz-muscovite-pyrite-staurolite schist. - DA210 3 m chip sample, quartz-muscovite-staurolite-pyrite schist. - DA211 3 m chip sample, quartz-muscovite-pyrite schist, similar to DAB204. - DA212 2 m chip sample, quartz-muscovite-staurolite-kyanite-pyrite schist, similar to DAB204. - DA213 3 m chip sample, quartz-muscovite-pyrite schist, similar to DAB204. - DA214 3 m chip sample, quartz-muscovite-pyrite schist, similar to DAB204. - DA215 3 m chip sample, quartz-muscovite-pyrite schist, similar to DAB204. - DA216 2 m chip sample, quartz-muscovite-pyrite schsit, similar to DAB204 - DA217 3 m chip sample, quartz-muscovite pyrite schist, similar to DAB204 - DA218 5.8 m chip sample, quartz-muscovite-pyrite-saturolite-kyanite schist, similar to DAB204. - DA219 5 m chip sample, quartz-feldspar-kyanite-pyrite schist, grayishorange, fine-grained, less mica than DAB204 and more feldspar and clay, more weathered. - DA220 3 m chip sample, quartz-feldspar-mica-pyrite schist, very lightto light gray, fine-grained, weathered. - DA221 4 m chip sample, quartz-muscovite-feldspar-pyrite schist, light-gray, fine-grained, weathered. - DA222 3 m chip sample, quartz-mica-feldspar-pyrite schist, light-gray, fine-grained, weathered. - DA223 0.6 m chip sample, saprolite, moderate-brown, fine-grained, derived from quartz-mica schist. - DA224 Composite sample quartz vein, light-gray, granular, 1-3 cm thick, from sample DA223. - DA225 0.6 m chip sample, saprolite, pale- to grayish-red, fine-grained, derived from quartz-mica-feldspar-garnet schist. - DA226 0.6 m chip sample saprolite, moderate-reddish-brown, fine-grained, derived from quartz-mica schist. - DA227 Composite sample of three quartz lenses, 1 to 3 cm thick in the lower part of sample DA226. - DA228 1 m chip sample, saprolite, moderate-yellowish-brown, fine-grained, derived from quartz-mica schist containing minor poikiloblastic red garnet in disc-shaped masses 0.5 cm across. - DA229 Composite sample of several lenses of vein quartz, white to light-brown, 1-2 cm thick in zone of 15 cm thick in schist of DA228. - DA230 1.6 m chip sample saprolite, light-brown, fine-grained, derived from quartz-mica-feldspar-garnet schist. Garnet, dark red, flat, disc-shaped, 0.5-1 cm across, poikiloblastic. - DA231 0.6 m chip sample, saprolite, light-brown, fine-grained, derived from quartz-mica-feldspar schist containing minor flattened garnets. - DA232 Composite sample of quartz vein, pinkish- to yellowish-gray, 10-15 cm thick, in schist of sample DA231. - DA233 0.6 m chip sample, saprolite, pale red, fine-grained, derived from quartz-mica-feldspar(?) schist. - DA234 Composite of three quartz veins, white to pinkish-gray, granular 1-3 cm thick in 1.3 m of mica schist of DA233. - DA240 1.3 m chip sample, quartz-mica-pyrite schist, weathered. - DA241 1.6 m chip sample, quartz-mica-pyrite schist, weathered. - DA242 1.3 m chip sample, quartz-mica-pyrite schist, weathered. - DA243 0.6 m chip sample, quartz-mica schist, weathered, minor pyrite. - Dawsonville quadrangle, Barlow cut - DABO1 1 m chip sample, saprolite, light-brown, clayey, derived from hornblende schist. - DABO2 1 m chip sample, saprolite, light to moderate-red and tan, silty, very fine-grained, derived from quartz-mica schist. - DABO3 1 m chip sample, saprolite, shear zone, reddish- to light-brown, derived from mica schist, minor amphibolite(?) and minor thin quartz lenses. - DABO4 0.6 m chip sample, saprolite, reddish-tan, silty, includes four quartz veins 1-8 cm thick. - DABO5 I m chip sample, saprolite, derived from mica schist and minor quartz veins. - DABO6 1.3 m chip sample, saprolite, greenish-gray, medium-grained, derived from mica schist. Includes two 1 cm thick guartz
lenses. - DABO8 1 m chip sample, quartz-mica schist and three quartz lenses, 0.5-1 cm thick. - DABO9 1 m chip sample, saprolite, light-brown, speckled grayish-orange, clayey, derived from hornblende-feldspar gneiss. - DAB10 0.6 m chip sample, saprolite, derived from mica schist. Includes one quartz vein 2 cm thick. - DAB11 1 m chip sample, saprolite, derived from mica schist above DAB09. - DAB12 1 m chip sample, saprolite, derived from mica schist. - DAB13 1 m chip sample, saprolite, derived from quartz-mica schist. - DAB14 1 m chip sample, saprolite, derived from quartz-mica schist. Includes two quartz-veins 0.5 cm thick. - DAB15 1 m chip sample, quartz-mica schist, weathered, 1 cm thick seam of disseminated sulfides. - DAB16 0.15 m chip sample, quartz-muscovite-biotite schist, light-gray, fine-grained, coarse-grained quartz lenses, minor iron sulfides. - DAB17 1 m chip sample, quartz-feldspar-mica gneiss, light- to medium-gray, very fine- to medium-grained. - DAB18 1 m chip sample, saprolite, derived from quartz-feldspar-mica schist. - DAB19 1 m chip sample, saprolite, derived from mica schist. - DAB20 Composite sample of several quartz veins near contact of mica schist and amphibolite. - DAB21 1 m chip sample, saprolite, derived from quartz-feldspar-mica schist and two 5 cm thick quartz lenses. - DAB22 0.3 m chip sample, saprolite, reddish-tan, clayey and silty, derived from mica schist containing two quartz veins 2-5 cm thick. - DAB23 1 m chip sample, saprolite, variegated reddish-brown, tan, and gray, medium-grained, derived from mica schist and minor thin quartz veins. - Dillard quadrangle - DIL1 Composite sample of quartz vein, white to pale red, 6-10 m thick(?), minor iron sulfides partly altered to limonite. - DIL2 0.6 m chip sample, saprolite, moderate-brown, derived from mica gneiss and calc-silicate(?) gneiss, minor vein quartz. - DIL3 1 m chip sample, saprolite, pale-reddish-brown, derived from interlayered mafic and mica schist, fine-grained, minor vein quartz. - DIL4 0.6 m chip sample, saprolite, light-brown, derived from feldsparmica-quartz gneiss and mica schist, one quartz vein 2 cm thick. - DIL5 0.6 m chip sample, quartz vein, white, barren. - DIL6 1 m chip sample, saprolite, medium-light-gray, derived from biotite granite, fine-grained. - Duluth quadrangle - DU01 1 m chip sample, quartzite, white, minor mica and feldspar, sheared. - DU02 1 m chip sample, saprolite, derived from quartz-mica-garnet schist. - DU03 1 m chip sample, quartzite, near top of unit. - DU04 1 m chip sample, saprolite, derived from mica-quartz-garnet(?) schist interlayered with quartzite. - DU05 1 m chip sample, quartzite, near base of unit. - DU06 1 m chip sample, quartz-mica-garnet schist, weathered. - DU07 1.6 m chip sample, quartzite, weathered, iron-stained, sandy. - DU08 1 m chip sample, quartzite, weathered. - DU09 1 m chip sample, quartzite, weathered. - DU10 1 m chip sample, saprolite, sandy, derived from feldspathic(?) quartzite. - DU11 I m chip sample, saprolite, reddish-brown and white, layered, derived from interlayered feldspathic quartzite and mica schist. - DU12 1 m chip sample, saprolite, reddish-brown, derived from quartz-mica-garnet schist, minor pegmatite and quartz pods. - DU13 1 m chip sample, saprolite, derived from mica-kyanite(?)-graphite schist. - DU14 1 m chip sample, quartzite, iron-stained. - DU15 1 m chip sample, quartzite, coarse-grained, weathered, minor mica and limonite after iron-sulfides. - DU16 0.3 m chip sample, quartzite, thin-layered, weathered, contains limonite after pyrite. Flowery Branch quadrangle FB1 1 m chip sample, quartzite, sheared. FB2 1 m chip sample, saprolite, reddish- and brownish-gray, derived from biotite schist containing pegmatite pods and quartz lenses. Helen quadrangle H001 1 m chip sample, saprolite, yellowish-orange, derived from muscovite-biotite-quartz schist, medium-grained, interlayered with quartz-feldspar-garnet gneiss and calc-silicate(?). H002 1 m chip sample, saprolite, pale red, derived from quartz-feldsparmica gneiss, very fine-grained. H003 1 m chip sample, saprolite, pale red, derived from quartz-feldsparmica gneiss, very fine-grained. H004 1 m chip sample, saprolite, greenish-gray to light-brown, derived from mica-quartz schist, medium-grained. H005 0.3 m chip sample, saprolite, light-brown, derived from mica schist, coarse-grained, single layer in reddish-brown clayey saprolite. H006 1 m chip sample, saprolite, moderate-yellowish-brown to greenish-gray, derived from muscovite-quartz-kyanite(?) schist. H007 1 m chip sample, quartz-feldspar-mica gneiss, medium-light-gray, fine-grained, thin layered. H008 1 m chip sample, mica-sillimanite(?) schist, pale-yellowish-brown, medium- to coarse-grained, weathered. Samples H009 - H019 are from Lot 10 mine. HOO9 1.3 m chip sample, saprolite, light-gray to pale-yellowish-brown, derived from quartz-feldspar-biotite gneiss. H010 1 m chip sample, saprolite, moderate-yellowish-brown, derived from quartz-feldspar-mica gneiss and interlayered mica schist. HO11 1.3 m chip sample, saprolite, tan to yellowish-gray, derived from muscovite schist. HO12 Composite sample of several quartz veins, 2-15 cm thick in zone 0.3 m thick in area of sample HO11. HO13 1.3 chip sample, saprolite, light-yellowish-gray, derived from quartz-feldspar-biotite gneiss. HO14 1.3 chip sample, saprolite, yellowish-gray, derived from quartz-feldspar-biotite gneiss. HO15 1 m chip sample, saprolite, similar to sample HO14. H016 1.6 m chip sample, saprolite, light-olive-gray, derived from interlayered mica schist and lesser amounts of mica gneiss. H017 1 m chip sample, saprolite, light-olive-gray, derived from interlayered feldspar-quartz-mica gneiss and lesser amounts of mica schist. HO18 Composite sample of several quartz veins, 5-10 cm thick, 0.5 m long, near sample HO17. HO19 1 m chip sample, saprolite, moderate-yellowish-brown, derived from interlayered mica-quartz-garnet schist and quartz-feldsparmica gneiss. HO21 0.3 m chip sample, saprolite, grayish-orange, derived from migmatitic mica schist, coarse-grained. HO22 1 m chip sample, muscovite-biotite-garnet schist, weathered; garnet red, 1-6 mm, trace graphite, sillimanite(?). - H023 1 m chip sample, quartz-feldspar-mica schist and coarse-grained muscovite schist, light-gray, trace red garnet. - HO24 1 m chip sample hornblende schist, thin layered. - Samples HO25 HO28 in area of Childs mine - H025 1 m chip sample, saprolite, moderate-yellowish-brown, derived from mica schist. - HO26 Composite sample several irregular quartz veins and lenses in mica schist saprolite. - H027 1 m chip sample, saprolite, light brown, derived from hornblende schist. - H028 1 m chip sample, saprolite, pale-red, minor quartz stringers, derived from quartz-mica schist(?). - H029 1 m chip sample, quartz-feldspar-mica gneiss, medium-gray to moderate-yellowish-brown where weathered, fine-grained. Analyzed sample weathered. - H030 1 m chip sample, saprolite to weathered, feldspar-quartz-mica gneiss, or gneissic granite, medium-grained. - HO31 0.5 m chip sample, saprolite, moderate-yellowish-brown, derived from mica schist containing quartz veins 0.5-1 cm thick. - H032 1 m chip sample, saprolite, very-pale-orange, clayey, derived from feldspar-quartz-mica gneiss or gneissic granite. - H033 1 m chip sample, saprolite, pale-reddish-brown, derived from mica schist. - HO34 1 m chip sample, saprolite, variegated greenish-gray, light-brown, light-gray and reddish brown, derived from quartz-feldspar-mica gneiss containing quartz veins 1-2 cm thick. - HO35F 1.3 m chip sample, interlayered mica-garnet schist and quartz-feldspar-mica gneiss, medium-light-gray, schist coarse-grained, garnet 1-4 mm, gneiss very fine-grained, layers 1-2 cm thick, minor quartz lenses and iron sulfides. - HO35W 0.6 m chip sample, saprolite, derived from interlayered schist and gneiss like sample HO35F. - H036 2 m chip sample, quartz-biotite gneiss, medium-gray, very fine-grained, minor garnet and trace iron sulfides. - H037 1 m chip sample, saprolite, very-pale-brown, derived from quartz-biotite gneiss like sample H036. - HO38 Composite sample quartz vein, 2-4 cm thick, in mica schist saprolite, minor pyrite. - HO39 0.6 m chip sample, saprolite, very-pale-orange, derived from quartz-mica gneiss. - HO40 2 m chip sample, saprolite, yellowish-gray, derived from interlayered mica gneiss and schist. - HO41 1 m chip sample, saprolite, light-olive-gray, derived from quartz-feldspar-biotite gneiss, very-fine-grained. - HO42 1 m chip sample, saprolite, grayish-orange, derived from interlayered mica gneiss and schist and quartz veins 1 cm thick. - HO44 1 m chip sample, saprolite, light-brown, derived from mica schist. - HO45 1 m chip sample, saprolite, pale-red, clayey, derived from quartz-feldspar-mica gneiss, very fine-grained. - HO46 1 m chip sample, saprolite, moderate-orange, derived from hornblende gneiss. - HO47 I m chip sample, saprolite, light-gray, derived from interlayered mica gneiss and schist; gneiss fine-grained, schist medium-grained. - HO48 0.3 m chip sample, saprolite, moderate-yellowish-brown, derived from mica schist. - H051 1 m chip sample, interlayered quartz-mica gneiss and mica schist, pale-yellowish-gray, minor iron sulfides, partly weathered. - HO52 Composite sample of several thin quartz veins containing minor pyrite. - H053 1.3 m chip sample, mica-quartz-garnet schist, medium-gray, medium-grained, trace iron-sulfides; garnet, red, 1-3 mm. - HO54 I m chip sample, saprolite, light-yellowish-brown to light-gray, sandy, contains thin quartz stringers, derived in part from quartz-feldspar-biotite gneiss, fine-grained. - H055 1 m chip sample, saprolite, light-brown, derived from interbedded hornblende gneiss and mica-garnet schist, minor quartz stringers, 0.5-1 cm thick. - H059 1 m chip sample, saprolite, yellowish-gray, derived from biotite-muscovite-quartz-feldspar(?) schist, and some mica schist and mafic schist layers, 2-5 cm
thick. - H064 1 m chip sample, biotite-muscovite-quartz-garnet schist, light-yellowish-brown, weathered, medium- to coarse-grained, minor quartz lenses, trace iron sulfides. - H065 1 m chip sample, quartz-feldspar-mica gneiss, light-yellowish-brown to light-gray, weathered, very fine-grained, trace limonite after iron-sulfides(?). - H066 1 m chip sample, saprolite, moderate-yellowish-brown, derived from mica schist containing quartz lenses. - H072 1 m chip sample, saprolite, pale-reddish-orange, derived from quartz-mica schist, fine- to medium-grained. - H073 Composite sample, quartz vein, some manganese stain, 1-10 cm thick, weathered, from area of sample H072. - H074 1 m chip sample, saprolite, pale-yellowish-orange, clayey, derived from quartz-mica schist(?), very fine-grained. - Samples H080-H088 mine workings along Dukes Creek - HO80 Composite sample, vein quartz, 1 m zone of veins and seams. - HO81 1.3 chip sample, saprolite, light-brown to reddish-tan, derived from mica schist, fine-grained, below zone of sample HO80. - HO82 1 m chip sample, saprolite, light-brown, soft, derived from quartz-mica schist, very fine-grained. - HO83 Composite of three quartz veins, 1-5 cm thick, from area of Sample HO82. - HO84 Composite sample, quartz veins, 5-15 cm thick, in zone 0.6 m thick in gray quartz-mica schist. - H085 0.6 m chip sample, saprolite, light-yellowish-brown, derived from quartz-feldspar(?)-mica gneiss, very fine-grained. Wall rock of sample H084. - HO86 O.6 m chip sample, saprolite, olive-drab, derived from mica-garnet schist, fine-grained, minor quartz lenses 1-2 cm thick. - HO87 0.3 m chip sample, saprolite, pale-yellowish-brown, derived from fine-grained mica-garnet schist, garnet as much as 1 mm. - HO88 Composite sample, vein quartz from area of Sample HO87. - Samples H089-H108 from White County mine. - HO89 0.6 m chip sample, saprolite, light-brown, derived from quartz-feldspar-mica gneiss, fine-grained. - H090 Composite sample, quartz vein, 5-10 cm thick, sheared, minor limonite after iron-sulfides, 1-10 mm. - H091 0.6 m chip sample, saprolite, moderate-orange-pink, derived from quartz-feldspar-mica gneiss, fine-grained, laminated. - H092 1.6 m chip sample, granite dike cutting gneiss and schist, weathered. Composed of feldspar, quartz, and muscovite, fine-grained, minor small red garnets. - H093 0.6 m chip sample, saprolite, moderate-orange-pink, derived from quartz-feldspar-mica gneiss(?), fine-grained, minor quartz veins, 1-2 cm thick. - H094 0.15 m chip sample, saprolite, weak-orange, derived from thin zone of quartz-mica gneiss and vein quartz. - H095 0.6 m chip sample, saprolite, moderate-orange-pink, derived from quartz-feldspar-mica gneiss, fine-grained, sheared(?), minor quartz veins. - H096 0.3 m chip sample, saprolite, moderate-yellowish-brown, derived from quartz-feldspar-mica gneiss and vein quartz. - H097 0.15 m chip sample, saprolite, light-brown, derived from quartz-feldspar gneiss and vein quartz. - H098 0.6 chip sample, saprolite, grayish-orange-pink, derived from quartz-feldspar-mica gneiss and minor vein quartz. - H099 0.15 chip sample, saprolite, grayish-orange-pink, derived from interlayered quartz-feldspar gneiss and quartz veins 1-2 cm thick. - H100 1 m chip sample, saprolite, grayish-orange-pink, derived from quartz-feldspar gneiss and one quartz vein 5 cm thick. - H101 I m chip sample, saprolite, light-brown, derived from interlayered quartz-feldspar gneiss, hornblende gneiss and calc-silicate gneiss(?), area sampled contains eight quartz veins 0.5 cm thick. - H102 Composite sample of six quartz veins in zone 0.6 m wide of quartz-feldspar gneiss saprolite, moderate-orange-pink. - H103 0.6 m chip sample, saprolite, moderate-orange-pink, derived from quartz-feldspar gneiss, zone containing quartz veins of sample H102. - H104 0.5 m chip sample, saprolite, pale-yellowish- to grayish-orange, derived from quartz-feldspar gneiss, and minor mica schist and vein quartz. - H105 0.3 m chip sample, saprolite, moderate-brown, derived from interlayered quartz-feldspar and quartz-feldspar-mica gneiss, and two quartz veins, 1 cm thick. - H106 0.6 chip sample, saprolite, grayish-orange-pink, derived from quartz-feldspar gneiss and one quartz vein 5 cm thick. - H107 0.6 m chip sample, saprolite, light-brown, derived from quartz-feldspar gneiss and several thin quartz veins. - H108 0.5 m chip sample, saprolite, pale-yellow, derived from granitic pegmatite dike. - Hightower Bald quadrangle - HB01 1.3 m chip sample, quartzite, pale-orange, very fine-grained, weathered. - HB02 1 m chip sample, saprolite, derived from mica schist. - HB03 0.6 m chip sample, saprolite, derived from biotite-quartz-feldspargarnet schist, medium-grained. - HB04 1 m chip sample, granite, fine-grained. - HB05 1 m chip sample, saprolite, gray, very fine-grained, derived trom quartz-feldspar-mica gneiss. - HB11 1 m chip sample, saprolite, tan, reddish-brown to light-brown, soft, derived from quartz-biotite-feldspar gneiss. - HB12 Composite sample, vein quartz, several thin veins in 0.15 m zone in gneiss saprolite. - HB13 1.6 m chip sample, saprolite, similar to sample HB11. - HB14 0.6 m chip sample, quartz vein, sheared. Hog Mountain quadrangle - HM1 1 m chip sample, feldspathic quartzite, very light-gray to very paleorange, very fine-grained, weathered. - HM2 1 m chip sample, saprolite, pale brown to gray, derived from mica schist, very fine-grained, trace garnet and graphite(?), minor vein quartz. - HM3 1 m chip sample, saprolite, pale-red to medium-light-gray, derived from mica schist, very fine-grained, graphitic(?), minor vein quartz. - HM4 Composite sample of several quartz lenses in graphitic(?) schist of sample HM3. - HM5 0.6 m chip sample, saprolite, grayish-orange, derived from interlayered very fine-grained feldspathic quartzite and quartz-mica schist; some schist layers graphitic(?). - HM6 0.6 m chip sample, quartzite, light-brown to very pale-orange, fine-grained, weathered. - HM7 0.6 m chip sample, quartzite, very-pale-orange, to light-brown, fine-grained, weathered, minor vein quartz. - HM8 1 m chip sample, saprolite, very light-gray to light-brown, derived from mica schist, very fine-grained, graphitic in part. Juno quadrangle - J1 0.6 m chip sample, saprolite, light-olive-gray, derived from mica schist, medium-grained. - J2 0.6 m chip sample, saprolite, grayish-orange to very-pale-orange, derived from feldspathic metasandstone, fine-grained, minor layers of quartz-muscovite schist, medium-grained. Lake Burton quadrangle - BL01 1 m chip sample, hornblende-feldspar schist, dark-gray, fine-grained, minor sulfide. - BL02 1 m chip sample, biotite-muscovite-quartz schist, minor quartz-calcite-pyrite lenses, medium-to coarse-grained. - BL03 1 m chip sample, saprolite, moderate-brown, derived from biotite-quartz schist. - BL04 I m chip sample, saprolite to partly weathered quartz-feldsparmuscovite-biotite schist, pinkish-gray, very fine-grained, minor garnet. - BLO5 0.5 chip sample of several quartz veins in saprolite derived from mica and hornblende schists. Veins 1-8 cm thick. - BL06 1 m chip sample, saprolite, pale-reddish-brown, derived from quartz-feldspar-mica schist. - BL07 Composite sample of quartz vein 0.3-0.6 m thick, stained grayish-orange-pink. - BLO8 1 m chip sample, saprolite, tan to olive-gray, to partly weathered, dark- to yellow-gray, quartz-feldspar-biotite-muscovite gneiss, accessory garnet, thin-layered or pin stripes of quartz-feldspar and biotite. - BL09 Composite sample, quartz vein, 2-4 cm thick. - BL10 0.6 m chip sample, saprolite, red, derived from mica gneiss containing seven thin quartz veins. - BL12 2 m chip sample saprolite, moderate-orange-pink, derived from sheared mica gneiss and contains one quartz vein 0.6 m thick and - numerous small quartz lenses, 2.5 cm thick. Quartz veins appear sheeted. - BL13 1 m chip sample, saprolite, orange- to reddish-tan, derived from sheared mica schist. - BL17 1 m chip sample, calc-silicate gneiss layer in amphibolite, granoblastic quartz, feldspar, and hornblende, minor garnet and epidote, fine-grained, laminated, partly weathered. - BL18 1 m chip sample, saprolite, friable, sandy, derived from interlayered mica schist and quartz-mica schist. - BL19 1 m chip sample, saprolite, light-gray to brown, derived from interlayered quartz-feldspar-mica gneiss, fine-grained, and biotite-muscovite-quartz schist, medium-grained. - BL20 1 m chip sample, amphibolite, partly weathered, interlayered with mica gneiss and schist. - BL21 1 m chip sample, saprolite, derived from hornblende schist, contains one quartz stringer, 1 cm thick. - BL22 1 m chip sample, saprolite, reddish-brown, fine-grained, derived from quartz-mica schist. - BL25 1 m chip sample, quartz-biotite-feldspar gneiss, medium-gray, fine-grained, weathered. - BL26 0.5 m chip sample, saprolite, reddish-brown and tan, derived from interlayered quartz-mica-feldspar schist and hornblende schist; includes two quartz seams, 1-2 cm thick. - BL29 1 m chip sample, saprolite, interlayered tan, light-gray and brown, derived from mica-feldspar schist and minor quartz lenses. - BL33 1 m chip sample, saprolite, derived from mica-quartz-garnet schist. - BL35 1 m chip sample, mica-quartz-kyanite-graphite schist, weathered. - BL37 1 m chip sample, saprolite, light-gray, coarse-grained, derived from mica-feldspar-quartz schist. - BL40 Composite sample of several quartz veins, 1-2 cm thick in zone 0.3 m thick in mica gneiss and schist, light- to medium-gray, fine-grained. - BL41 0.6 m chip sample, interlayered quartz-mica gneiss and schist, light- to medium-light-gray, fine-grained wall rock of sample BL40. - Macedonia quadrangle - OS1 Composite sample from dump at Bell Mountain quarry, quartz, white, pale reddish-brown, moderate-orange-pink, minor iron sulfide. - OS2 Composite sample from dump at Bell Mountain quarry, quartz, brown, limonite stained. - Matt quadrangle - Mat01 1 m chip sample, saprolite,
variegated, clayey, derived from mica schist, minor quartz veins, 1 cm thick. - Mat02 1 m chip sample, saprolite, derived from coarse-grained migmatitic mica schist. - Mat03 1 m chip sample, mica-garnet schist, weathered, minor quartz stringers. - Mat04 1 m chip sample, saprolite, derived from interlayered mica schist and hornblende schist. Mica schist contains minor garnet and vein quartz. Sample mostly mica schist saprolite. - Mat05 1 m chip sample, saprolite, white, derived from quartz-mica schist. - Mat06 1 m chip sample, saprolite, reddish-purple, derived from mica schist, medium-grained, garnets 1-3 mm. - Mat07 1 m chip sample, saprolite, derived from garnet-mica schist. - Mat08 1 m chip sample, saprolite, greenish-gray, derived from mica schist, fine-grained, minor quartz lenses 1 cm thick. - Mat10 1.6 m chip sample, quartzite, light-gray, contains thin layers of magnetite and limonite. - Matll 1 m chip sample, saprolite, derived from hornblende schist. - Mat12 0.3 chip sample, magnetite-quartzite, light- to dark-gray, thin-layered to laminated. - Matl3 1 m chip sample, saprolite, reddish-brown, derived from mica schist. - Mat14 0.6 m chip sample, saprolite, derived from zone of mica-garnet schist and abundant thin quartz veins. - Mat15 1 m chip sample, saprolite, greenish-tan, derived from mica-garnet schist and thin quartz veins. - Mat16 1 m chip sample, saprolite, derived from mica-garnet schist, and minor quartz veins 1 cm thick. - Mat17 1 m chip sample, saprolite, derived from interlayered mica-garnet and hornblende schist, minor quartz lenses. Garnets 6-12 mm. Murrayville quadrangle - MO5 4 m chip sample, saprolite, brown, soft, clayey. Derived from mica schist, fine-grained. - M07 2 m chip sample, saprolite, grayish-orange, derived from fineto medium-grained quartz-mica schist. - MO8 4 m chip sample, saprolite, brown, clayey, derived from biotite schist(?) - M09 2.5 m chip sample, saprolite, gray to brown, laminated; derived from quartz-mica schist, minor quartz veins, 1 cm thick. - M10 2 m chip sample, quartz-mica-garnet schist, dark-brown to light-brownish-gray, very fine-grained, thin-layered, weathered, manganese-stained. - M11 5 m chip sample, saprolite, brown, clayey interlayered with laminated quartz-mica schist similar to M10 and minor vein quartz lenses. - M12 3 m chip sample, saprolite, variegated, orange, purple, grayish-brown, clayey, minor vein quartz stringers 1 cm thick. - M13 0.3 m chip sample, saprolite, similar to sample M12. - M14 0.6 m chip sample, saprolite, similar to sample M12. - M15 0.3 m chip sample, saprolite, dark-yellowish-orange, clayey. - M16 0.3 m chip sample, saprolite, pale-reddish-brown. - M17 0.15 m chip sample, saprolite, derived from feldspar-quartz-mica schist, fine-grained. - M18 Composite sample of two quartz veins, 0.5-5 cm thick in reddishbrown saprolite. - M19 4 m chip sample, saprolite, grayish- to yellowish-orange and palered, clayey, derived from feldspar-hornblende schist(?). - M20 0.3 m chip sample, saprolite, reddish-orange to yellowish-brown, thin layered, derived from quartz-mica schist, fine-grained. - M21 0.3 m chip sample, saprolite, very pale-orange to grayish-orange, derived from quartz-mica schist, coarse-grained, minor garnet. - M22 0.3 m chip sample, saprolite, moderate-orange-red to pale-orange, thin layered, derived from quartz-mica schist, very fine-grained, mica magnetite. - M24 0.3 m chip sample, saprolite, similar to sample M22. - M25 Composite sample of vein quartz in seams 0.5 to 2 cm thick in 0.6 m zone of schist saprolite. Seams concordant and discordant to foliation of schist. - M26 1.2 m chip sample, quartz-mica-garnet schist, weathered, coarse-grained. - M27 0.3 m chip sample, saprolite, light-olive-gray to moderate-yellowish-brown, laminated, derived from quartz-mica-feldspar(?) schist, very fine-grained. - M28 0.3 m chip sample, saprolite, pink, clayey. - M29 0.3 m chip sample, saprolite, yellow-orange, clayey, derived from mafic schist. - M30 0.3 m chip sample, saprolite, yellowish-olive-gray, clayey, dark gray to black spots may be altered garnet, derived from quartz-mica-garnet(?) schist. - 1 m chip sample, saprolite, interlayered pale-yellowish-orange to light-brown, clayey, derived from biotite-feldspar and hornblende-feldspar gneiss(?). - M32 1 m chip smaple, quartz-mica-garnet schist, light-gray, fine-grained, weathered. - M33 0.3 m chip sample, saprolite, orange- to reddish-brown, fine-grained, minor quartz veins 1 cm thick. - 1 m chip sample, saprolite, orange-brown, derived from hornblende schist boudin. - M35 0.3 m chip sample, saprolite, olive-gray, derived from quartz-mica-garnet schist, minor quartz lenses concordant to foliation. - M36 I m chip sample, saprolite, light-brown, derived from hornblende schist, minor quartz veins and stringers 2-10 cm thick. - M37 1 m chip sample, mica schist, greenish gray, weathered. Quartz lenses 1-2 cm thick. - M38 1 m chip sample, quartz-mica schist, greenish-gray, fine-grained, weathered. - M39 1 m chip sample, saprolite to partly weathered hornblende schist. - M40 1 m chip sample, hornblende schist, thin-layered, minor epidote. - 1 m chip sample, quartz-muscovite-biotite-garnet schist, medium-light gray, fine-grained, minor iron sulfides, some quartz lenses 1-10 cm thick. - M42 1 m chip sample, mica-garnet schist, coarse-grained. - M43 1 m chip sample, interlayered mica schist and quartz-mica gneiss, fine- to medium-grained, contains iron sulfide. - M45 1 m chip sample, quartzite, yellowish- to light gray, sheared, contains minor magnetite, muscovite and chlorite. - M48 0.3 m chip sample, saprolite, orange, clayey. Derived from mica-garnet schist. - M50 1 m chip sample, quartz-mica gneiss, medium-light-gray, fine-grained. - 1 m chip sample, interlayered quartz-mica gneiss and mica-garnet schist, coarse-grained, minor quartz lenses 1-2 cm thick by 15 cm long. - 1 m chip sample, saprolite, yellow-brown, derived from feldsparhornblende-quartz(?) gneiss, sheared. - 1 m chip sample, saprolite, light-yellowish-gray, derived from feldspathic gneiss, sheared. - M58 Composite sample, vein quartz, 0.6 m thick, in pit at Teal prospect. Murrayville quadrangle, Calhoun mine - MCO1 Composite sample, quartz vein, 1-5 cm thick in mica schist saprolite, minor muscovite, goethite, and hematite in vein. May have contained carbonate. - MCO2 1 m chip sample, saprolite, brownish-gray, derived from interlayered quartz-mica schist and quartz-biotite gneiss, sheared, minor quartz stringers. - MCO3 Composite sample of average rock on dump, quartz-mica schist. - MCO5 1 m chip sample, saprolite, variegated light- to moderate brown, pale-reddish-brown and black, fine-grained, derived from quartz-mica gneiss similar to sample MC46. - MC06 1 m chip sample, saprolite, moderate- to moderate-yellowish-brown, derived from quartz-mica gneiss, fine-grained, rare garnet, minor, quartz stringers, 1 cm thick. - MCO7 1.3 m chip sample, saprolite, derived from quartz-mica schist similar to sample MC48. - MCO8 Composite sample, quartz vein, 1-7 cm thick, minor goethite. - MC09 0.6 m chip sample, saprolite, dark-yellowish-brown, streaked with very-pale-orange, derived from fine-grained quartz-feldspar-mica gneiss. - MC10 I m chip sample, saprolite, moderate-brown to light brown, streaked, derived from quartz-mica-garnet schist, fine-grained. - MC11 Composite sample, quartz-vein, 5 cm thick, minor limonite. - MC12 1 m chip sample, saprolite, light- to moderate-brown, streaked, derived from mica-feldspar-quartz-garnet gneiss, fine-grained. - MC13 0.6 m chip sample, saprolite, light-olive-gray, speckled light-brown, derived from quartz-feldspar-mica-garnet gneiss, fine-grained, garnet coarse-grained. - MC14 1 m chip sample, saprolite, derived from mica schist. - MC15 1 m chip sample, saprolite, derived from mica schist. - MC16 0.6 m chip sample, saprolite, derived from mica schist. - MC17 0.6 m chip sample, saprolite, derived from mica schist. - Samples MC20 MC46 from lower adit driven in 1940's. - MC20 Composite sample, quartz vein, 2 cm thick in quartz-mica schist, in adit 25 ft from portal, sample mostly schist. Vein contains calcite and iron sulfides. - MC21 0.3 m chip sample, quartz-mica-garnet schist, medium- to dark-gray, fine-grained; a few blue quartz grains 0.5-2 mm, garnets 1-3 mm; 32 ft from portal. - MC22 Composite sample, quartz-calcite-chlorite vein, 2-10 cm thick, and some quartz-mica schist wall rock, 40 ft from portal. Vein has trace iron sulfides. - MC23 0.3 m chip sample, quartz-mica schist, medium-gray, wall rock of quartz vein of sample MC22, contains minor garnet and trace iron sulfides. - MC24 Composite sample, quartz vein, 0.5 m thick, pinches out near back of adit. 62 ft from portal. trace iron sulfides. - MC25 0.3 m chip sample, quartz-mica schist below vein of MC24, pale yellowish brown, minor garnet, rare iron sulfides and black tourmaline. - MC26 0.3 m chip sample, saprolite, dark-yellowish-brown, derived from sheared mica schist near pinch-out of quartz vein sample MC24; 80 ft from portal. - MC27 Composite sample, quartz vein, 75 ft from portal, trace limonite stain and coatings on fractures. - MC28 0.3 m chip sample, quartz-mica schist, medium-gray, 89 ft from portal, minor garnet. - MC29 0.3 m chip sample, quartz-feldspar-biotite-garnet schist, mediumgray and brown layers, rare iron sulfides, 99 ft from portal. - MC30 Composite sample, saprolite, derived from mica-garnet schist in shear zone(?), 5 cm wide, 112 ft from portal. - MC31 Composite sample of quartz vein 0.3-0.6 m thick, 130 ft from portal. Vein contains minor carbonate, chlorite, and iron sulfides. - MC32 0.3 m chip sample, quartz-biotite-muscovite-garnet schist, medium-dark-gray, garnet 2-5 mm, quartz and mica less than 1 mm, 125 ft from portal. - MC33 Composite sample, quartz vein, 0.3 m thick, contains calcite, 158 ft from portal. Vein has trace iron-sulfides. - MC34 0.3 m chip sample, quartz-biotite-garnet schist,
medium-gray and light-medium-gray, streaked, fine-grained, a few blue quartz grains 1-2 mm 156 ft from portal. - MC35 0.3 m chip sample, quartz-mica schist, medium-gray, minor garnet and iron sulfides, 200 ft from portal. - MC36 0.3 m chip sample, quartz-biotite schist, medium-dark-gray, fine-grained, minor iron sulfides, 225 ft from portal. - MC37 Composite sample, quartz vein, 0.1-0.3 m thick, contains calcite, chlorite, iron sulfides, 240 ft from portal. - MC38 0.3 m chip sample, quartz-biotite schist, medium-dark-gray, rare garnet and iron sulfides, 254 ft from portal. - MC39 0.3 m chip sample, vein quartz, 0.6 m zone of quartz veins and schist. Quartz contains calcite, chlorite, 273 ft from portal. - MC40 0.3 m chip sample, quartz mica schist, medium-to medium-dark-gray, fine-grained, minor garnet and pyrite; 285 ft from portal. - MC41 Composite sample, quartz vein, 5 cm thick in quartz-mica schist, contains iron sulfides, calcite and chlorite. 331 ft from portal. - MC42 Composite sample, two quartz veins, 1 cm thick, and enclosing quartz-mica schist country rock, 330 ft from portal. Veins contain calcite and iron sulfides. - MC43 0.6 cm chip sample, quartz-biotite-muscovite schist, medium- to dark-gray, minor iron sulfides, scattered blue quartz grains 1-3 mm, most of rock very fine-grained; from area of samples MC41 and MC42. - MC44 0.3 m chip sample, quartz-mica gneiss, medium-gray, fine-grained; minor blue quartz grains, 0.5-1 mm and some iron sulfides; 389 ft from portal. - MC45 Composite sample of fresh limonite coating on adit wall spreading out from joint in rock; near sample MC44. - MC46 Composite sample of quartz vein, 0.5-15 cm thick, in dark gray quartz-mica-garnet-schist. Vein has calcite, chlorite, and minor iron sulfide; near face of schist. - Samples MC47-MC57 collected from adit level up the corkscrew raise to stope above. - MC47 0.3 chip sample, quartz-mica schist and minor vein quartz, medium-dark-gray; a few blue quartz grains 0.5-1 mm, from foot of raise. - MC48 Composite sample quartz vein, 3-5 cm thick, contains chlorite, iron sulfides, and calcite; vein discordant to foliation of enclosing schist, from area of first turn of raise. - MC49 0.3 chip sample, quartz-mica schist, medium-gray, fine-grained, minor garnet 1-3 mm, and blue quartz grains 1-2 mm; from area of sample MC48. - MC50 Composite sample of four quartz veins, 2-5 cm thick at second turn in raise, minor calcite, chlorite and iron sulfides. - MC51 0.6 m chip sample, quartz-mica schist, light- to medium-gray, fine-grained, wall rock in area of sample MC50. Samples from old stope level - MC52 Composite sample of quartz vein, 5-10 cm thick, and quartz-mica schist at northeast face, vein contains minor carbonate and iron sulfides. - MC53 0.6 m chip sample, quartz-mica-garnet schist, medium-gray, fine-grained, minor iron sulfides, from area of sample MC52. - MC54 Composite sample of quartz vein and quartz-mica schist from pillar in stope northeast of head of raise, minor iron sulfide and carbonate in vein and iron sulfide in schist. - MC55 Composite sample of limonite coating on footwall of stope near samples MC52 and MC53. - MC56 Composite sample quartz-mica schist, medium-dark-gray, very fine-grained, contains scattered 1-2 mm blue quartz grains and minor iron sulfides; minor quartz stringers. From stope above and 30 ft to northeast of area of samples MC52 and MC53. - MC57 Composite sample altered vein material and country rock from area near sample MC56, medium-light-gray to light-olive-gray, fine-grained. Murrayville quadrangle, Turkey Hill mine - MT1 Composite sample from dump, quartz-mica-garnet schist, medium-gray, very fine-grained, garnet, red, 1-3 mm, porphyroblastic, euhedral. - MT2 Composite sample from dump, quartz-mica-garnet schist and minor quartz-calcite-chlorite veins 1-4 mm thick, schist is streaked light-gray and medium-gray, very fine-grained. - MT3 1 m chip sample, quartz-mica-garnet schist, similar to sample MT1, but weathered. - MT4 1 m chip sample, saprolite, derived from quartz-mica schist. - MT5 Composite sample quartz lens, 15 cm thick, 30 cm long in schist saprolite. - MT6 1 m chip sample, saprolite, derived from quartz-mica schist and quartz-calcite lenses and veins. Notteley quadrangle RI Grab sample at Stone Products quarry, quartz, pale red to white. Satolah quadrangle - SA1 1 m chip sample, saprolite, gray, soft, sandy, derived from biotite gneiss. - SA2 1 m chip sample, saprolite, gray, soft, sandy, derived from quartz-feldspar-biotite-muscovite gneiss, medium-grained, migmatitic. - SA3 1 m chip sample, saprolite, gray, soft, derived from quartz-feldsparbiotite-muscovite gneiss. - SA4 1 m chip sample, saprolite, tan, soft, derived from biotite-muscovite schist, minor pegmatite stringers. Suwanee quadrangle - SUI I m chip sample, saprolite, grayish-orange-pink to light-brown, derived from mica-garnet schist, medium-grained, garnet 1-5 mm. - SU2 1 m chip sample, saprolite to weathered gneissic granite, fine-grained. - SU3 0.6 m chip sample, feldspar-quartz-biotite gneiss, light gray to light-yellowish-brown, weathered, fine-grained. Tallulah Falls quadrangle - TF1 1.3 m chip sample, arkosic quartzite, medium- to coarse-grained, weathered. - TF2 2 m chip sample, arkosic quartzite, medium- to coarse-grained, weathered. - TF2R 1.3 m chip sample, arkosic quartzite, grayish-orange, weathered. - TF3 0.6 m chip sample, graphitic schist lens in quartzite of sample TF2R. - TF4 1 m chip sample, saprolite, dusky-yellowish-orange, derived from quartz-muscovite schist and arkosic quartzite. - TF5 0.6 m chip sample, graphitic schist light-olive- to light-gray, weathered, minor vein quartz. - TF6 0.6 m chip sample, graphitic schist, light-olive- to medium-gray, weathered, minor vein quartz. Tiger quadrangle - TI3 1 m chip sample, siliceous mylonite, pale-yellowish-orange. - TI4 1 m chip sample, siliceous mylonite, weak-yellowish-orange, iron-stained. - TIS 0.6 m chip sample, saprolite, grayish-orange, derived from meta-arkose, fine-grained. - TI6 0.6 m chip sample, saprolite, pale-yellowish-brown, derived from meta-arkose, fine-grained. - TI7 2 m chip sample, quartzite, light- to medium-gray minor iron sulfides. Toccoa quadrangle - T01 0.6 m chip sample, saprolite, very-pale-orange, derived from feldspathic quartzite or quartz-feldspar-mica gneiss, fine-grained. - TO2 1 m chip sample, hornblende-feldspar gneiss, olive-gray to olive-black, fine-grained, weathered. - TO3 Composite sample of fines from rock crushing operation, derived from feldspathic quartzite, trace of biotite, muscovite and garnet. - TO4 0.6 m chip sample, saprolite, grayish-orange, medium-grained, sandy, derived from feldspathic quartzite, trace of biotite and muscovite. - TOS 0.3 m chip sample, quartz-biotite-muscovite schist, olive-gray, fine-grained, weathered. - To6 0.6 m chip sample, saprolite, very-pale-orange, derived from feldspathic quartzite, fine-grained, trace biotite and muscovite. Tray Mountain quadrangle - TM2 1 m chip sample, saprolite, light-gray, sandy; derived from quartz-mica gneiss, fine-grained. - TM3 0.3 m chip sample, quartz-muscovite schist, weathered, pale-red to light-brown, mica coarse-grained. Contains limonite after sulfides and/or carbonates. - TM4 1 m chip sample, saprolite, reddish-brown; derived from mica schist; contains minor quartz lenses, 1 cm thick. - TM5 1 m chip sample, saprolite, light-gray to reddish-brown, very fine-grained; derived from quartz biotite-feldspar gneiss. - TM6 0.6 m chip sample, saprolite, light-gray, medium-grained, derived from mica-quartz schist, interlayered with gneiss of TM5. - TM7 1 m chip sample, feldspar-quartz-hornblende granulite, pale-orange, minor epidote alteration, weathered. Tugaloo Lake quadrangle - TU1 0.6 m chip sample, quartzite - TU2 0.3 m chip sample, graphitic schist, dark gray, very-fine-grained. - TU3 0.6 m chip sample, saprolite, derived from quartzite(?). - TU4 1 m chip sample, quartz-biotite-muscovite schist, light-olive-gray, fine-grained, minor garnet, red, and iron sulfides(?). - TU5 1 m chip sample, quartz-feldspar-biotite gneiss, medium-light-gray, fine-grained, migmatitic, finely layered, minor vein quartz. ## Explanation of Table 2 Table 2 lists results of the various analyses, except the XRF analyses which are listed separately in Table 3. Samples are listed twice where analyses were repeated. Iron, magnesium, calcium, and titanium are reported in percent (%); the other elements in parts per million (ppm). Letters below element symbols are: s, six-step, semiquantitative spectrographic method; aa, atomic absorption; inst, instrumental. Other symbols: N, not detected at detection limit give in text; <, less than value shown; >, greater than value shown; --, not determined. Elements looked for spectrographically but not found and the limits of detection in ppm: As, 200; Au, 10; Bi, 10; Cd, 20; Sb, 100; Sn, 10; and W, 50. Exceptions: As - samples DF36 and DA022, 200 ppm; MC10, 500 ppm; MC01, 700 ppm; MC44, detected but less than 200 ppm. Au - sample H107, detected but less than 10 ppm. Bi - samples CL22 and H096, 10 ppm; D123, 30 ppm; DIL2, 70 ppm; D096, detected but less than 10 ppm. Cd - sample DU03, 50 ppm. Sb - sample H027, 100 ppm. Sn - samples CM17, C14, C26, DA123, DA125, 10 ppm; CMT13, C14, DCM08, DF12, 15 ppm; CM14, C12, 20 ppm; DA009, 30 ppm. ## REFERENCES CITED - Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic materials: U.S. Geological Survey Circular 591, 6 p. - Kinkel, A. R., and Lesure, F. G., 1968, Residual enrichment and supergene migration of gold, Southeastern United States: U.S. Geological Survey Professional Paper 600-D, p. D174-D178. - Lesure, F. G., 1969a, Residual enrichment and supergene transport of gold, Calhoun mine, Lumpkin County, Georgia [abs.]: Geological Society of America Abstracts with
Programs for 1969, pt. 4 Southeastern Section, p. 45-46. - Motooka, J. M., and Grimes, D. J., 1976, Analytical precision of one-sixth order semiquantitative spectrographic analysis: U.S. Geological Survey Circular 738, 25 p. - Nelson, A.E., Horton, J.W., Jr., and Clarke, J.W., 1989, Geologic map of the Greenville 1 X 2 degree quadrangle, GA, SC, and NC: U.S. Geological Survey Open-File Report 89-9, scale 1:250,000. - Thompson, C. E., Nakagawa, H. M., and Van Sickle, G. H., 1968, Rapid analysis for gold in geologic materials, <u>in</u> Geological Survey Research, 1968: U.S. Geological Survey Professional Paper 600-B., p. B130-B132. - U.S. Geological Survey, 1968, U.S. Geological Survey Heavy Metals Program Progress Report 1966 and 1967: U.S. Geological Survey Circular 560, 24 p. - Ward, F. N., Nakagawa, H. M., Harms, T. F., and Van Sickle, G. H., 1969, Atomic-absorption methods of analysis useful in geochemical exploration: U.S. Geological Survey Bulletin 1289, 45 p. Table 2. - Analyses of rock and saprolite samples. [N, not detected; <, detected but below the limit of determination shown; >, determined to be greater than the value shown.] | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|--|--|---|---|--|---------------------------------|--|--|---| | AY1
AY2
AY3
AY4
AY5
AY6
AY7
AY8
BD1
BD2 | 34 31 47
34 31 47
34 31 57
34 32 58
34 32 58
34 33 14
34 33 14
34 37 7
34 8 4
34 8 28 | 83 22 32
83 22 32
83 20 40
83 23 32
83 23 25
83 23 1
83 22 59
83 25 47
84 2 55
84 3 6 | 2
3
5
7
1.5
1.5
15
10
3 | .3
.5
1
1.5
.2
.15
1.5
.7 | 1.5
2
5
1.5
.7
.3
2
<.05
.15 | .15
.15
.2
1
.15
.15
.5 | 1,000
1,500
1,500
2,000
1,000
1,500
3,000
3,000
300
500 | N
N
N
N
N
N
N | 20
N
N
<10
<10
<10 | 1,000
700
500
700
2,000
3,000
500
1,000
500 | 1
2
2
7
1.5
<1
1.5
<1
1.5 | | BD3
BD4
BD5
BD6
BD7
BD8
BD9
CM01
CM01
CM02 | 34 7 53
34 8 20
34 9 20
34 9 20
34 15 0
34 15 0
34 31 37
34 31 37
34 31 25 | 84 3 10
84 6 10
84 6 10
84 6 30
84 6 30
84 7 20
84 7 20
84 0 30
84 0 30
84 0 37 | 3
.7
3
5
1
7
1.5
3 | .7
.07
.15
.02
.15
.05
.3 | .1
<.005
.007

.02
<.05
.07 | .5
.1
.2
.07
.3
.15
.3
.7 | 1,000
50
100
700
150
15
300
300
700
300 | N
N
N
N
N
N
N | <10

30 | 150
300
300
200
300
300
500
500
300
300 | 2
N
N
N
N
N
N
N
1
2 | | CM02
CM03
CM03
CM04
CM04
CM06
CM06
CM13
CM13
CM14 | 34 31 25
34 31 24
34 31 24
34 31 22
34 31 22
34 31 18
34 31 18
34 30 15
34 30 30 | 84 0 37
84 0 42
84 0 42
84 0 50
84 0 50
84 0 55
84 0 55
84 2 38
84 2 36 | 10
10
3
15
7
15
7
10
2 | 1
1
5
3
3
3
1
. 7 | <.05
.02
.2
3
7
.07
1.5
<.05
.02
N | 1
1
.3
1
.3
1
.3
.7
.3
.7 | 700
700
300
2,000
700
1,000
500
700
300
150 | N
N
N
N
N
N | 70
70

N

N

20

10 | 500
1,000
700
20
15
70
30
2,000
1,500 | 1.5
1.5
3
N
N
N
N
S
5 | | CM14
CM17
CM17
CM18
CM18
CM22
CM22
CM24
CM44
CM44 | 34 30 30
34 31 23
34 31 23
34 31 23
34 31 23
34 31 45
34 31 45
34 31 43
34 30 46 | 84 2 36
84 2 20
84 2 20
84 2 20
84 2 20
84 0 59
84 0 59
84 0 6
84 0 6 | 7
3
5
1
.3
15
5
2
1.5
.15 | .7
.5
.3
.07
.05
7
1
.01
.2
.02 | .03
.005
N
<.05
<.005
<.05
.05
<.05 | .3
.3
.5
.15
.07
>1
.7
.2
.15 | 50
150
700
700
150
2,000
500
500
150
700 | N
N
N
N
N
N
N | N N 30 10 10 | 1,500
700
1,000
300
150
300
150
500
700
300 | 5
3
3
<1
N
1
1
1
1 | | CM46
CM47
CM47
CM48
CM48
CM53
CM53
CM54
CM54
CM55 | 34 30 46
34 30 47
34 30 47
34 30 47
34 30 55
34 30 55
34 30 55
34 30 55
34 30 55
34 30 55 | 84 | .7
15
7
15
5
2
1
1.5
3 | .2
1.5
1
1.5
1
.05
.7
.7 | .07
.05
2
.01
.7
N
.005
.02
N | .2
.7
.5
1
.3
.7
.15
.3
.3 | 300
3,000
1,500
>5,000
1,500
1,000
300
200
700
300 | N
N
N
N
N
N | <10

N

<10

N | 200
500
500
200
70
1,000
700
700
700 | 1
1
2
<1
N
1
N
1
1.5 | | CM55
CM60
CM61
CM62
CM63
CM64
CM65
CM66
CM66
CM67 | 34 30 55
34 30 35
34 32 49
34 32 55
34 32 55
34 32 51
34 33 20
34 33 20
34 31 46
34 31 46 | 84 0 33
84 7 18
84 7 18
84 6 28
84 5 16
84 4 27
84 4 27
84 3 23
84 3 23 | 3
3
3
.3
3
.5
.2
3 | .07
.5
.03
<.02
.5
.5
.7
<.02
.3
<.02 | .05 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | .3
.3
.05
.3
.3
.5
.02
.5 | 1,000
700
500
300
500
700
1,000
50
700
30 | N
N
N
N
N
N | N 20
N <10
<10
<10
100
N 10 | 700
300
50
300
300
300
500
N
500
N | 3
1
<1
<1
1
1
1
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
′s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|---|--|--|--|---------------------------------------|---|--|---|--|---| | AY1
AY2
AY3
AY4
AY5
AY6
AY7
AY8
BD1
BD2 | N
3
20
N
N
30
30
15 | 1
1
150
<10
N
N
150
50 | 5
50
10
50
20
15
100
30
20
5 | 50
N
20
30
30
20
70
N | N
N
N
N
N
N
N
N | 10
15
<10
15
10
10
<10
20
10 | N
N
20
5
15
15
20
70 | 20
20
15
30
15
30
30
30
15 |

15
<5
<5
70
30
10 | 100
100
200
100
<100
N
<100
N
N | | BD3
BD4
BD5
BD6
BD7
BD8
BD9
CM01
CM01
CM02 | 50
5
7
150
7
N
10
15
15 | 20
10
70
7
100
10
150
30
70 | 50
30
100
70
70
5
150
50
70 | N <30
N N N N N N N N N 20 | <5
N
N
N
N
N
N
N | 20
<10
<10
N
10
10
10
10
20 | 10
10
15
5
15
3
50
20
30
30 | 10
50
30
10
20
10
50
20
50 | 10

15 | N
10
5
5
5
N
7
15
50
70 | | CM02
CM03
CM03
CM04
CM04
CM06
CM06
CM13
CM13 | 20
30
30
50
30
50
30
5 | 100
150
70
300
150
100
50
N
2 | 50
70
50
100
100
30
30
10
7 | 150
100
70
N
N
N
100
70 | N N N N N N N N N N N N N N N N N N N | 20
20
20
<10
<10
10
N
30
30 | 30
50
30
70
30
20
20
2
10 | 50
50
30
50
30
15
20
50
30 | 30
20

70

50

30

30 | 50
100
70
700
200
100
70
70
30 | | CM14
CM17
CM17
CM18
CM18
CM22
CM22
CM24
CM44
CM44 | N
5
5
5
3
50
30
20
15 | 7
2
N
N
1
100
70
10
5
20 | 20
30
30
10
5
70
70
10
5 | 50
30
50
20
N
50
50
20
N
30 | N N N N N N N N N N N N N N N N N N N | 30
15
20
10
<10
15
10
10
N | 7
5
2
<2
N
50
30
15
10 | 30
70
100
30
10
20
15
20
20 |
30
5

50

5 | 20
7
<50
N
N
5
100
150
70 | | CM46
CM47
CM47
CM48
CM48
CM53
CM53
CM54
CM54
CM55 | 30
50
30
100
50
30
30
15
20 | 30
300
200
200
150
10
10
15
15 | 70
300
200
300
200
10
20
30
10 |
30
20
N
N
N
N
30
20 | N
N
N
N
N
N
N | N
15
10
10
N
15
10
15 | 10
50
50
70
50
5
5
15
15 | 20
30
15
30
15
30
15
20
20 | 70

70

10

20 | 30
300
200
100
70
<50
10
15
<50
30 | | CM55
CM60
CM61
CM62
CM63
CM64
CM65
CM66
CM67
CM68 | 20
20
15
15
15
20
20
10
20 | 10
30
5
<5
20
30
70
<5
150
<5 | 10
30
20
<2
50
20
30
<2
30
<2 | 50
N
N
N
30
20
N
N
N | N
N
N
5
N
< 5
N | 10
10
10
<10
20
10
20
<10
20
<10 | 5
10
10
5
70
50
70
<5
30 | 20
20
30
<10
15
15
N
70 | 20
7
N
10
7
20
N
15
N | 50
N
N
N
N
N
N
S0
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn- ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |--|---|--|--|--|---|---|--|--|--|---|---| | AY1
AY2
AY3
AY4
AY5
AY6
AY7
AY8
BD1
BD2 | 15
20
50
150
10
10
500
200
70 | 50
50
20
30
30
20
30
30
15
20 | N
N
N
N
N
200
N
N | 100
100
70
300
70
70
70
500
200 | . 08
. 03
. 04
N
N
N
N
N | .44
.75
.29

 | <10
<10
<10
 | 25
25
80
52
5
15
160
33
45
66 | <10
25
10
18
<5
<5
37
12
26
8 | <25 <25 <25 10 <5 12 12 16 12 12 |

2
<2
<2
<2
<2
<2
3
3 | | BD3
BD4
BD5
BD6
BD7
BD8
BD9
CM01
CM01
CM02 | 200
30
150
20
150
30
200
70
100 | 10
<10
10
<10
15
N
30
20
30 | <200
N
N
N
N
N
N
N
N | 150
500
70
200
70
150
70
300
500
300 | N
<.02
<.02
<.02
<.02
<.02
<.02
N
N | .83
.9
1
.95
.75
1.1
 | <10
<10
<10
<10
<10
<10
<10
<10 | 51
<25
130
<25
50
<25
100
60
 | 53
19
50
25
25
14
80
15
 | 12
<25
<25
<25
<25
<25
<25
<25
<25
<25 | 4 | | CM02
CM03
CM03
CM04
CM04
CM06
CM06
CM13
CM13 | 100
150
150
300
200
300
150
20
15
50 | 150
70
70
50
50
50
30
70
150 | N N N N N N N N N N N N N N N N N N N | 500
300
300
100
70
100
50
700
500
700 | . 02
N
N
. 04
N
N
N
. 02
N | | <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 |
77

36

25

<25 |
17

40

10

<10 |
<25

<25

<25

<25 |

 | | CM14
CM17
CM17
CM18
CM18
CM22
CM22
CM24
CM44
CM46 | 50
20
30
20
N
500
150
50
50 | 200
100
100
30
200
100
70
<10
N | N N N N N N N N N N N N N N N N N N N | 700
500
700
150
100
500
300
150
150 | N
N
.04
N
N
.02
N
.04
N | | 20
<10

<10

<10

<10 | <25
<25

-25

120

<25
 | <10
15

<10

27

<10 | <25
30

25

<25

<25 |

 | | CM46
CM47
CM47
CM48
CM48
CM53
CM53
CM54
CM54
CM55 | 70
700
300
500
200
100
70
70 | 20
70
70
50
30
50
30
70
70 | N
N
N
N
N
N
N | 150
150
150
150
70
200
150
300
300 | .1
1.7
2.2
.04
.07
.04
.06
.3
N | | <10

<10

<10

<10
<10 | <25

45

72

25
61

70 | 90

200

170

<10
11

10 | <25

<25

<25

<25
<25

<25 | | | CM55
CM60
CM61
CM62
CM63
CM64
CM65
CM66
CM67
CM68 | 100
50
20
<10
70
70
100
<10
70 | 50
15
<10
N
20
50
15
N | N
N
N
N
N
<200
N
N | 300
200
300
100
200
200
200
N
300 | . 1
N
N
N
N
N
N
N | | |
47
12
<5
75
86
44
<5
8 | 32
18
<5
60
25
29
<5
22 | 18
50
16
18
22
14
<5
30 | 4
4
3
8
4
4
4
3
4 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct. | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag- ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|--|--|---|---|--|---------------------------------|---------------------------------------|--|--| | CE1
CE2
CL01
CL02
CL02
CL02
CL05
CL05
CL05
CL09 | 34 18 40
34 18 40
34 35 3
34 35 3
34 35 3
34 35 3
34 35 3
34 34 34
34 34 34
34 34 37 | 83 59 40
83 59 40
83 50 25
83 50 25
83 50 25
83 50 25
83 50 15
83 50 15
83 51 23
83 51 23 | .2
2
3
5
10
5
7
3
3 | <.005
.015
.5
.7
1
.7
.7
.7
.7 | .01
.007
.01
<.05
<.05
.05
<.05
.01 | .02
.1
.2
.5
1
.3
.7
.3
.15 | 15
20
10,000
>5,000
1,000
700
1,000
700
700
500 | N
N
N
N
N
N
N |

10
150

150

N | 20
70
200
500
300
200
200
150
150 | N
N
1
1
1.5
2
1.5
1.5
N | | CL12
CL12
CL14
CL14
CL15
CL15
CL16
CL16
CL17
CL17 | 34 36 42
34 36 47
34 36 47
34 36 47
34 36 47
34 36 48
34 36 48
34 36 50
34 36 50 | 83 46 35
83 46 35
83 47 6
83 47 9
83 47 9
83 47 13
83 47 13
83 47 22
83 47 22 | .7
1
3
2
5
3
3
5
1.5 | .5
.3
.05
.07
.7
.2
.5 | .3
.5
N
.005
N
.007
.01
N | .1
.15
.5
.3
.7
.3
.3
.7 | 300
700
500
300
1,000
700
1,000
1,000
300
200 | N
N
N
N
N
N
N |

N
N

N

N | 500
300
100
50
300
150
300
500
1,500 | 2
2
1.5
2
1.5
1
1.5
1 | | CL18
CL19
CL19
CL20
CL20
CL22
CL22
CL22
CL23
CL23 | 34 36 48
34 36 48
34 36 48
34 36 48
34 36 48
34 36 53
34 36 53
34 36 53
34 36 53 | 83 47 34
83 47 35
83 47 35
83 47 35
83 47 35
83 47 43
83 47 43
83 47 43
83 47 43 | 3
2
3
3
3
2
10
7
7
3 | .5
.7
.2
.07
.15
.05
3
3
1 | .007
N
.3
.1
.07
<.05
3
3
2 | .3
.5
.3
.2
.3
.5
.5 | 500
700
700
500
500
500
3,000
2,000
1,000
700 | N
N
N
N
N
N
N |
N

N

N
N | 200
300
70
50
30
30
20
15
500
300 | 1
1.5
1
1
N
1
N
1
N | | CL24
CL25
CL25
CL26
CL26
CL27
CL27
CL27
CL28
CL28 | 34 37 3
34 37 4
34 37 4
34 37 13
34 37 13
34 37 19
34 37 19
34 37 30
34 37 30 | 83 47 52
83 47 52
83 47 53
83 47 53
83 48 0
83 48 0
83 48 6
83 48 6
83 48 24
83 48 24 | 10
7
5
7
10
7
5
3
3 | .07
.2
.5
.7
.7
.5
.7
.7 | <.05 .1 .1 <.05 N .005 <.05 .1 1.5 | .5
.3
.5
.7
.3
.5
.3 | 2,000
1,500
1,000
2,000
1,500
700
500
700
1,000 | N
N
N
N
N
N
N | 15

100
10

N
 | 30
30
300
500
700
300
500
700
700 | 2
2
1
1
1.5
2
1
1
3
2 | | CL29
CL29
CL33
CL33
CL34
CL34
CL35
CL35
CL36
CL36 | 34 37 30
34 37 30
34 35 10
34 35 10
34 35 18
34 35 18
34 35 18
34 35 18
34 35 27
34 35 27 | 83 48 24
83 48 24
83 50 30
83 50 35
83 50 35
83 50 35
83 50 35
83 50 47
83 50 47 | 3
5
3
5
3
2
5
2
5
5
5
5
5
5
5
5
5
5
5
5 | .7
1
.3
.5
.5
.5
1
.7
.7 | 2
1.5
.03
N
.007
N
.01
N | .2
.5
.3
.7
.3
.7
.3
.5 | 700
1,000
700
1,000
700
1,000
300
700
1,000
1,500 | N
N
N
N
N
N
N | N

20

N

N | 300
500
150
300
500
700
700
700
500 | 2
2
N
1
N
1.5
1
1.5
2 | | CL37
CL38
CL38
CL40
CL40
CL42
CL42
CL42
CL45
CL45 | 34 35 32
34 35 32
34 35 32
34 35 32
34 35 49
34 35 49
34 36 11
34 36 11
34 36 44
34 36 44 | 83 51 4
83 51 4
83 51 4
83 51 4
83 51 19
83 51 19
83 51 23
83 51 23
83 51 3
83 51 3 | 5
3
5
3
5
3
10
3 | 1.5
1
.7
.7
1
1
1
1.5 | 1
1.5
3
1.5
.07
<.05
.007
<.05
<.05 | .3
.3
.5
.3
.5
.2
.3 | 700
500
500
700
1,500
1,500
500
700
700
1,000 | N
N
N
N
N
N
N | N N 10 10 | 700
500
700
700
700
500
700
1,000
500
500 | 1
3
2
1
3
2
3
2
1
2 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|---|--|--|--|---|--|--|--|--|--| | CE1
CE2
CL01
CL01
CL02
CL02
CL05
CL05
CL05
CL09 | N
N
30
70
100
50
50
30
30 | 1
7
15
50
70
70
50
50
10 | 2
15
150
200
30
70
30
100
30 | N N 50 100 100 100 100 70 N N | N
N
N
N
N
N
N
N | 10
N
<10
10
15
15
10
10
<10
<10 | N
N
30
50
100
70
50
30
7 | N
10
30
70
50
20
50
15
15 | 15
15
15

20
 | N
N
N
N
30
N
20
5
N | | CL12
CL12
CL14
CL14
CL15
CL15
CL16
CL16
CL17
CL17 | 15
15
10
5
70
30
30
20
5 | 10
10
20
15
50
30
50
70
N | 1.5
10
15
30
50
70
70
70
10 | 70
70
N
N
50
50
150
150
100 | N
N
N
N
N
N
N
N | <10
<10
10
10
10
<10
<10
10
N | 10
5
5
10
15
30
30
2 | 30
70
50
30
50
50
30
70
50
20 | <5
5

15

10
5 | 200
200
N
15
N
5
15
N
2,000 | | CL18
CL18
CL19
CL19
CL20
CL20
CL22
CL22
CL22
CL23
CL23 | 20
15
30
15
20
10
100
30
15
20 | 50
50
50
50
30
30
70
50
20 | 30
10
70
20
70
20
300
300
10
15 | 150
150
N
N
N
N
N
N
N
N | N
N
N
N
N
N
N
N
N | <10
10
10
10
10
<10
<10
<10
10 | 30
30
30
20
10
5
30
30 | 20
20
10
15
20
20
20
15
50 | 10

20

20
50

30 | 15
N
15
N
N
200
150
300 | | CL24
CL24
CL25
CL25
CL26
CL26
CL27
CL27
CL27
CL28
CL28 | 70
30
30
70
100
30
10
20
20 | 200
100
70
70
70
70
70
70
70 | 100
150
70
30
500
700
30
70
70 | 30
30
150
100
100
100
70
70
100
100 | N
N
N
N
N
N
N | 10
N
10
15
10
10
10
10 | 50
50
30
50
50
30
50
30
30 | 10
N
20
20
50
30
20
20
30
50 | 50

15
20

10

20 | N
N
100
50
N
30
N
200 | | CL29
CL29
CL33
CL33
CL34
CL34
CL35
CL35
CL36 | 30
70
15
15
15
20
15
30 | 30
50
70
30
50
50
50
50 | 150
70
70
50
200
300
700
500
70 | 70
70
30
50
70
100
150
150 | N
N
N
N
N
N
10 | 10
15
10
10
10
10
10
10
10 | 30
50
30
30
30
30
20
10
30 | 30
50
30
50
15
30
30
70
30 | 15

20

15

15

20 | 150
300
20
N
15
N
30
N
70 | | CL37
CL37
CL38
CL38
CL40
CL40
CL42
CL42
CL42
CL45 | 20
15
30
50
70
150
20
50
30 | 70
30
30
50
70
70
70
100
50 | 50
30
30
30
70
30
100
150
30 | 70
70
N
20
150
100
30
20
50 | N
N
N
N
N
N
N | 10
10
10
15
10
15
<10
15
10 | 30
20
20
30
50
50
30
50
30 | 50
20
20
30
30
50
30
70
30 | 15

15

15

30
10 | 700
200
300
700
50
50
30
N
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-p pm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |--|--|--|--|--|--|-------------------------------|---|---|--|--|--------------------------| | CE1
CE2
CL01
CL01
CL02
CL02
CL05
CL05
CL05
CL09 | N
30
70
100
100
100
100
100
70 | N
N
30
70
70
30
100
70
20 | N
N
N
N
N
N
N | 150
300
100
100
200
300
200
150
150 | <.02
<.02
N
N
N
N
N
N | .7
.69

 | <10
<10
60

<10

<10
<10 | <25
<25
130

150

150
130 | 15
<10
35

21

31
55 | <25
<25
<25

<25

<25

<25
 |

 | | CL12
CL12
CL14
CL14
CL15
CL15
CL16
CL16
CL17
CL17 | 30
30
70
70
100
70
70
100
70 | 20
20
10
15
70
70
150
150 | N
N
N
N
N
N
N | 300
200
300
200
700
300
300
500
150
200 | N
N
N
.02
N
.02
N | | 10

<10

10
<10

<10 | 47

<25

120
120

42 | <10

<10

23
26

<10 | <25

<25

<25
<25

<25 | | | CL18
CL18
CL19
CL19
CL20
CL20
CL22
CL22
CL22
CL23 | 70
100
150
100
150
100
300
300
150 | 50
50
15
10
10
20
50
20
30 | N
N
N
N
N
1,500
2,000
N | 200
200
100
200
200
150
70
70
150
150 | N . 02
N N
N N
N N
N N | | <10

<10

<10

10

10 | 160

25

<25

1,200

72 | 10

11

14

280
 |
<25

<25

<25

<25

<25 |

 | | CL24
CL24
CL25
CL25
CL26
CL26
CL27
CL27
CL27
CL28
CL28 | 300
300
70
150
100
70
70
70
70 | 50
150
100
50
100
150
50
70
150
100 | N
N
N
N
N
N
N | 50
200
200
300
200
300
300
300
300 | .02
N
N
N
N
N
N
N
N |

 | 10
<10

<10

<10
<10 | 52
93

66

130 | 750

19 | <25 <25 <25 <25 <25 <25 <25 <25 |

 | | CL29
CL29
CL33
CL33
CL34
CL34
CL35
CL35
CL35
CL36 | 70
70
70
100
70
70
70
100
70 | 100
70
15
50
100
70
100
70
100
50 | N
N
N
N
N
N
N | 150
700
200
200
300
500
100
150
100 | N . 08
N N
N N
N N
N N | | <10

<10

<10

<10
 | 75

52

160

190

140 | 50

24

150

900

26 | <25

<25

<25

<25

<25 |

 | | CL37
CL37
CL38
CL38
CL40
CL40
CL42
CL42
CL42
CL45 | 100
70
70
100
70
100
100
100
70 | 70
70
30
50
150
100
30
50
70 | N
N
N
N
<200
N
<200
N | 200
300
300
500
300
300
150
150
500 | N
N
N
. 02
N
. 02
N
. 04
N | | <10
<10
<10

<10

<10 | 100
64

210

110

100 |
22
<25

17

47

12 | <25
<25

<25

<25

<25 | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct. | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|---|---|---|---|--|---------------------------------------|------------------------------------|--|---| | CL46
CL48
CL48
CL51
CL51
CL55
CL55
CL55
CL56
CL56 | 34 37 6
34 37 6
34 0 24
34 0 24
34 36 57
34 36 57
34 34 50
34 34 50
34 34 50
34 34 50 | 83 50 56
83 50 56
83 51 53
83 51 53
83 52 14
83 52 14
83 52 0
83 52 0
83 52 0
83 52 0 | 10
3
3
2
5
3
5
7
5
3 | 1
1
1
.5
.1
.15
.3
1 | <.05
.05
.05
<.05
N
.007
.7
.15
<.05 | .5
.3
.3
.5
.3
.15
.2
.2 | 700
700
1,500
1,000
200
200
1,500
1,000
500
300 | N
N
N
N
N
N
N | 20

15
N

50
150 | 500
500
500
300
200
150
150
300 | 2
3
3
1.5
2
2
1
<1
1.5
N | | CL57
CL57
CMT01
CMT02
CMT03
CMT04
CMT05
CMT06
CMT07
CMT07 | 34 34 46
34 34 46
34 22 26
34 15 1
34 15 9
34 15 19
34 15 20
34 15 21
34 18 24 | 83 52 6
83 52 6
84 6 52
84 6 52
84 7 7
84 7 7
84 6 6
84 6 6
84 6 4 | 7
5
7
3
.2
.2
.7
.7 | 1
.7
1.5
.7
.01
<.005
.01
<.005
.01 | <.05
.07
.3
1.5
.01
.007
.01
.007 | .7
.7
.5
.5
.15
.05
.15
.03
.15 | 200
300
500
700
5
5
3
10
100
20 | N
N
N
N
N
N
N
N | 100 | 1,000
700
1,000
700
50
30
70
100
50 | 3
3
3
1.5
N
N
N
N | | CMT09
CMT10
CMT11
CMT12
CMT13
CMT14
C05
C05
C08
C08 | 34 18 35
34 18 34
34 18 32
34 16 50
34 21 48
34 21 48
34 39 10
34 39 10
34 39 40
34 39 40 | 84 1 51
84 1 50
84 1 49
84 1 38
84 6 47
84 6 47
83 45 50
83 45 50
83 46 14
83 46 14 | 5
.7
.7
5
1.5
7
5
5
5 | .01
.015
.01
<.005
.2
1
.5
.5
.2 | .005
.007
.01
.007
.1
.03
.07
N | .15
.05
.07
.05
.07
.5
.3
.3 | 200
30
30
5
200
700
100
700
1,000 | N
N
N
N
N
N
N
N |

N
N | 50
100
100
20
500
700
1,000
500
300
500 | N
N
N
1.5
1.5
1 <1
2 | | C09
C09
C11
C11
C12
C12
C13
C13
C14
C14 | 34 39 50
34 39 50
34 40 14
34 40 14
34 40 14
34 40 17
34 40 17
34 40 20
34 40 20 | 83 46 17
83 46 17
83 46 24
83 46 24
83 46 24
83 46 35
83 46 35
83 46 37
83 46 37 | 5
3
10
3
5
3
5
5
5 | 1
.7
.7
.3
.5
1
.7
.5
.07 | N
.007
.01
<.05
.005
N
.3
.07
.05 | .5
.3
.5
.5
.7
.3 | 700
700
1,500
1,000
500
700
500
300
2,000
2,000 | N N N N N N N N N N N N N N N N N N N | N
N
N
N
N | 500
700
500
500
150
200
1,500
1,000
500 | 2
1
1
2
N
2
1
1
1
2
2 | | C16
C17
C17
C18
C18
C19
C19
C20 | 34 41 18
34 41 18
34 41 43
34 41 45
34 41 45
34 40 3
34 40 3
34 39 45
34 39 45 | 83 46 9
83 46 14
83 46 14
83 46 30
83 46 30
83 46 55
83 46 55
83 46 14
83 46 14 | 3
7
2
3
3
5
10
7 | .7
2
.5
.7
.7
1
.5
.7
.02 | .05
N
.2
.05
.7
.5
N
.05
N | .3
.5
.5
.5
.5
.3
.05 | 500
700
700
1,500
500
500
1,500
1,500
20 | N
N
N
N
N
N | <10 N N <10 N <10 N | 700
1,000
1,500
1,500
1,000
1,000
700
20 | 1.5
2
2
2
2
2
1
2
3
1.5 | | C21
C21
C26
C26
C29
C29
C30
C30
C31 | 34 39 45
34 38 37
34 38 37
34 37 37
34 37 37
34 37 35
34 37 35
34 37 41
34 37 41 | 83 47 14
83 47 14
83 47 25
83 47 25
83 48 35
83 48 35
83 48 32
83 48 32
83 48 43
83 48 43 | 3
2
5
3
5
3
.7
1
5
7 | .7
.2
.02
.015
2
1.5
.03
.02 | <.05
.01
<.05
<.005
1
1
<.005
<.05
.05
N | .5
.3
.7
.3
.5
.5
.02
.05 | 700
500
700
700
1,000
1,000
100
300
1,500
1,000 | N
N
N
N
N
N
N | N <10 <10 N 10 | 300
150
200
100
700
700
50
100
700 | 3
2
1
1
3
3
N
<1
2
1.5 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|---|---|---|--|---|--|--|---|--|--| | CL46
CL48
CL48
CL51
CL51
CL55
CL55
CL56
CL56 | 50
30
20
20
10
3
30
50 | 100
50
30
50
100
70
70
100
30 | 50
50
30
30
30
30
150
150 | 150
150
150
100
<20
N
N
<20
<20
N | N
N
N
N
N
N
N
N | 20
20
20
15
20
10
<10
10
10 | 50
30
50
30
20
30
30
30
30 | 50
20
30
50
30
20
15
15 | 20

10
15

30
20 | 70
70
15
N
N
15
15
N
N | | CL57
CL57
CMT01
CMT02
CMT03
CMT04
CMT05
CMT06
CMT07
CMT07 | 20
20
15
7
N
N
N
S
N | 100
10
70
30
5
2
7
3
70 | 70
50
30
20
2
<1
5
10
30
2 | 100
70
100
50
N
N
N
70 | N
N
N
N
N
N
N | 20
15
30
10
10
N
N
N | 30
20
30
10
3
N
N
20 | 50
20
70
30
10
10
10
10 | 20 | 50
70
150
100
N
N
N
S
5 | | CMT09
CMT10
CMT11
CMT12
CMT13
CMT14
C05
C05
C08
C08 | 7
N
N
N
15
N
30
30 | 30
1
1
15
1.5
100
50
50
70 | 50
7
7
10
2
20
200
200
100 | N
N
N
30
50
150
20
N | N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N | N
N
N
10
10
15
10 | 7
N
3
N
N
50
15
2
20 | 15
N
N
N
50
20
100
200
70
50 |

10
15 | 5
5
70
500
15
N
15 | | C09
C09
C11
C11
C12
C12
C13
C13
C14 | 30
20
30
50
10
15
20
10
150 | 70
70
30
70
30
50
50
30
70 | 150
150
100
100
50
70
5
5
150 |
20
N
N
N
N
<20
100
30
70
50 | N
N
N
N
N
N
N
N | 15
10
10
20
10
20
20
20
20
15 | 30
30
30
20
20
20
20
5
50 | 50
20
70
200
30
50
30
70 | 20

20

15

10

15 | N
20
15
N
5
N
70
<50
30 | | C16
C16
C17
C17
C18
C18
C19
C19
C20 | 15
10
15
10
15
10
50
30
N | 50
70
30
50
30
70
70
70
70 | 70
100
20
15
30
70
300
500
5 | 100
100
70
70
30
100
100
<20
30 | N
N
N
N
N
30
20 | 10
10
10
10
15
10
15
10
<10
<10 | 30
50
10
10
15
10
30
30
N | 30
50
20
50
20
30
100
50
50 | 15

15

15
20

N | 30
N
150
70
150
200
N
30
N | | C21
C21
C26
C26
C29
C29
C30
C30
C31 | 15
10
20
15
30
30
3
5
30 | 50
30
100
70
70
70
5
10
70 | 70
70
70
70
70
70
20
30
100 | 70
30
70
N
70
70
N
N
50 | | 10
<10
15
10
15
15
N
<10
15
20 | 10
15
100
70
20
30
3
N
70 | 100
30
100
70
100
70
N
N
10
20 | 10

20

20

N

20 | N
30
N
N
200
150
N
N
15 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |--|--|---|---|---|---|---|--|---|---|--|-------------------------| | CL46
CL48
CL48
CL51
CL51
CL55
CL55
CL55
CL56 | 70
70
70
50
100
70
150
150 | 70
70
150
70
10
10
30
20
50 | <200
N
N
<200
N
N
N
N
N | 200
300
300
300
1,000
300
30
100
150 | N
N
N
N
N
N
. 06
N | | <10
<10
<10
<10
<10
<10 | 160
130

<25
90

120 | 20
<10

<10
36

<10 | <25
<25
<25

<25
<25

<25 | | | CL57
CL57
CMT01
CMT02
CMT03
CMT04
CMT05
CMT06
CMT07
CMT08 | 100
150
150
70
10
7
10
N
70 | 50
70
70
70
N
<10
N
10 | <200
N
N
N
N
N
N
N | 300
300
700
300
200
150
150
100 | .04
N
<.02
<.02
.03
.03
.02
<.02
<.02 |
.9
.8
.8
.6
.58
.69
1.1 | 40
20
<10
<10
<10
<10
<10
<10 |
64
25
30
<25
<25
<25
<25
<25 | 21
25
15
<10
<10
<10
<10 | <25
<25
<25
<25
<25
<25
<25
<25
<25
<25 | | | CMT09
CMT10
CMT11
CMT12
CMT13
CMT14
C05
C05
C08
C08 | 70
10
7
50
10
150
70
50
100 | <10
N
N
N
30
30
100
50
15
30 | N N N N N N N N N N N N N N N N N N N | 50
150
100
10
100
150
500
300
200
300 | <.02
.03
<.02
<.02
N
N
.08
.06
.04 | .95
.85
.8
.7

 | <10
<10
<10
<10
<10
10
20 | <25
<25
<25
<25
<25
120
<25

38 | 10
10
<10
<10
<24
<24
110

34 | <25
<25
<25
<25
45
25
36
 |

4
<2

 | | C09
C09
C11
C11
C12
C12
C13
C13
C14 | 100
70
70
100
70
100
70
70
70 | 30
30
50
30
30
30
150
50
70 | N
N
N
N
N
N
N
N | 200
200
200
500
300
300
500
300
200 | . 1
N
N
N
N
. 02
N
N
N |

 | <10
<10
<10

<10

<10 | 140
95

45

85

47 | 47
26

14

<10

40 | <pre><25 160 41 <25 210</pre> | | | C16
C16
C17
C17
C18
C18
C19
C19
C20 | 70
100
70
70
70
100
100
100
70 | 150
100
150
70
100
50
100
100 | N
N
N
N
N
200
N
N | 300
700
1,000
700
300
700
150
150
150 | N
N
N
N
. 02
N
N
N | | <10

<10

<10

<10

<10 | 110

83

93

220

<25 | 14

<10

21

500

<10 | <25

<25

<25

39

<25 | | | C21
C21
C26
C26
C29
C30
C30
C31 | 50
50
100
70
100
150
N
10
150 | 100
150
20
30
100
150
N
N
30 | N
N
N
N
N
N
N
N | 1,000
300
700
300
500
300
20
<10
300
500 | N
N
N
N
N
N
.04
N |

 | <10
<10
<10
<10
<10
<10 |
44

26

150
<25

140 | 11

15

28
20

23 | 29

100

32
<25

<25 | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|---|--|---|--|---|---|--|---|---|--|--| | C33
C34
C34
C35
C35
C36
C36
C37 | 34 37 52
34 37 52
34 37 55
34 37 55
34 38 0
34 38 0
34 38 5
34 38 5
34 38 30
34 38 30 | 83 49 7
83 49 7
83 49 20
83 49 26
83 49 26
83 49 35
83 49 35
83 50 12
83 50 12 | 10
5
5
5
7
10
5
10
3 | 1.5
1.5
.7
.5
7
3
.7
1 | .5
1
.1
<.05
7
2
.15
<.05
N | >1
.7
.5
.7
.7
.7
.5
.7 | 500
300
1,500
1,000
2,000
1,500
1,000
1,000
500
700 | N N N N N N N N N N N N N N N N N N N | 10

<10

<10

70
N | 1,500
700
700
500
70
100
500
500
700 | 1.5
3
3
2
7
2
7
2
7
2
1
N | | C38
C38
C42
C42
CU01
CU02
CU03
CU04
CU05
CU06 | 34 38 43
34 38 43
34 38 12
34 31 19
34 11 9
34 11 9
34 13 35
34 13 38
34 13 38 | 83 50 24
83 50 24
83 51 35
83 51 35
84 8 27
84 8 27
84 8 27
84 9 40
84 9 50
84 9 50 | 3
5
7
5
1.5
.5
5
.7
.7 | .5
.3
.5
.7
.03
.02
.3
.015
.015 | .03
N
<.05
.07

.01
<.005 | .3
.7
.7
.3
.1
.05
.5
.1 | 1,000
1,500
2,000
1,500
100
15
15
30
300
50 | N
N
N
N
N
N
N
N | N
10

 | 500
500
300
500
500
200
2,000
200
150
50 | 1
2
2
2
N
N
N
N
N | | CU07
CU08
CU09
CU10
CU11
CU12
CU13
CU14
CU15
CU16 | 34 13 41
34 13 41
34 13 43
34 13 42
34 12 59
34 12 59
34 12 2
34 12 2
34 14 48 | 84 10 2
84 10 2
84 10 4
84 10 3
84 10 50
84 10 49
84 11 45
84 11 46
84 14 13 | .3
7
.15
1.5
.2
.5
.3
5
7 | .05
.05
.02
.1
.05
.07
.005
.005 | .01
.01
.005
.01
.01
.01
.005
.007 | .15
.05
.05
.15
.03
.05
.05
.7 | 7
50
30
100
30
30
100
20
30
30 | < 1
N
N
N
N
N
N
N | | 70
70
30
150
70
50
70
15
30 | N
N
N
N
N
N
N | | D001
D002
D003
D004
D005
D006
D007
D008
D009 | 34 31 26
34 31 26
34 31 26
34 31 26
34 31 26
34 31 26
34 31 22
34 31 15
34 31 14
34 31 6 | 83 58 27
83 58 27
83 58 27
83 58 27
83 58 27
83 58 27
83 58 30
83 58 37
83 58 37
83 58 34 | 20
>10
10
>10
5
10
15
10
10 | .15
.15
.7
.3
.2
.7
.15
.7 | <.05
.07
<.05
.7
.03
<.05
<.05
<.05 | >1
.2
.5
.2
.1
.5
>1
.1 | 1,500
15,000
>5,000
100,000
5,000
>5,000
1,000
700
1,000 | <.5
N.5
N. 5
N. 5
<5
<5
<5 | <10

50

30
30
<10
<10
150 | 100
1,000
1,000
200
300
1,000
300
300
500
700 | <1
N
1.5
N
N
1.5
<1
1
1 | | D011F
D011S
D012
D013
D014
D015
D016
D017
D018
D019 | 34 30 52
34 30 52
34 30 34
34 30 29
34 30 25
34
30 24
34 30 32
34 30 4
34 35 10 | 83 58 32
83 58 32
83 58 31
83 58 28
83 58 22
83 58 14
83 58 17
83 58 14
83 58 6
83 58 13 | 10
10
15
7
5
10
7
10
7 | 2
2
2
1
1
2
1.5
2
1.5
.7 | 1.5
1
.1
.3
.005
.7
2
1
.15
.007 | 1
1
1
.2
.3
1
.5
1
.7 | 300
500
>5,000
15,000
150
500
700
500
700
300 | <.5
<.5
<.N
N
<.5
N
<.5
N
N | <10
<10
<10

70

30
 | 1,000
500
700
500
500
700
500
700
500
700 | 1
1
1.5
N
1
1.5
N
1
3 | | D021
D022
D023
D024
D025
D026
D027
D028
D031
D032 | 34 36 29
34 36 29
34 36 25
34 33 54
34 33 54
34 32 33
34 32 33
34 33 0
34 33 0 | 83 58 12
83 58 12
83 58 11
83 59 30
83 59 30
83 59 30
83 58 11
83 58 11
83 53 10
83 53 10 | 15
10
5
10
5
15
5
1 | .07 1 .7 1.5 .2 1.5 1.5 .3 .5 | <.05
<.05
.007
.3
.1
<.05
.05
1.5
.05 | 1
1
.3
.5
.2
.15
.7
.1
.07 | 300
500
500
2,000
1,000
2,000
700
150
150
500 | <.5
<.5
N
<.5
<.5
<.5
<.5
<.5
<.5 | <10
<10

<10
<10
<10
<10
20
N | 200
300
200
200
150
300
300
300
300 | 2
1.5
N
1.5
1
3
1
1.5
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-pp m
s | La-p pm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|---|--|---|--|---|--|--|--|--|---| | C33
C34
C34
C35
C35
C36
C36
C37 | 20
20
30
30
30
50
30
20
10 | 150
70
70
30
150
200
70
70
70 | 150
100
200
100
70
70
50
30
150 | 150
200
150
100
N
N
200
150
50 | N
N
N
N
N
N
20
N | 15
20
15
20
<10
<10
15
15
20 | 50
30
30
30
100
150
30
15
10
30 | 70
30
30
15
20
20
30
50
20 | 30

20

50

20
30 | 500
150
30
N
300
700
70
50
<50 | | C38
C38
C42
C42
CU01
CU02
CU03
CU04
CU05
CU06 | 30
100
50
30
N
N
N
S | 30
50
70
70
10
2
100
7
3
50 | 20
5
70
100
10
N
70
2
<1
30 | 100
50
100
150
N
N
30
N | N
N
N
N
N
N
N
N | 10
20
15
15
N
N
10
10 | 30
20
20
30
5
N
7
5
7 | 20
20
50
30
15
10
30
20
10 | 30
20

 | 70
N
N
30
N
N
15
N | | CU07
CU08
CU09
CU10
CU11
CU12
CU13
CU14
CU15
CU16 | N
3
7
5
7
3
30
N
N | 10
15
1
30
2
2
2
70
30
7 | 10
20
5
15
2
5
3
7
20 | N
N
N
N
N
100
N | N
N
N
N
N
N
N
N
N | N N N N N N N N N 10 10 15 | N
15
N
15
N
N
N
N
15 | 20
30
10
30
N
30
10
10
30 | | N
N
70
N
N
N
N | | D001
D002
D003
D004
D005
D006
D007
D008
D009
D010 | 50
150
100
20
15
50
5
30
50 | 700
30
200
30
20
50
150
150
200 | 200
300
50
200
150
70
70
70
50 | <20
50
<20
50
30
50
20
30
50
50 | <5
N
<5
N
N
<5
<5
<5
<5
<5 | <10
N
<10
N
N
<10
<10
<10
<10
<10 | 150
200
50
100
20
30
50
100
70 | <10
70
50
70
50
20
10
15
20
20 | >100

70

15
50
70
50
30 | <100 15 <100 20 10 <100 <100 <100 <100 <100 <10 | | D011F
D011S
D012
D013
D014
D015
D016
D017
D018
D019 | 70
30
10
30
15
20
15
<5
15 | 150
150
150
30
70
100
70
150
100 | 50
50
70
5
70
50
70
70
70 | 20
30
50
50
N
20
N
30 | <5
<5
N
N
<5
N
<5
N | <10
<10
<10
N
N
<10
N
<10 | 100
70
100
20
30
30
30
20
50 | 15
10
20
15
20
15
15
10
30 | 50
20
50

20

30
 | 200
100
<100
50
300
150
100
100
30
300 | | D021
D022
D023
D024
D025
D026
D027
D028
D031
D032 | 50
50
15
30
<5
50
20
50
7 | 700
200
30
20
<10
200
70
10
5 | 100
150
200
50
20
150
30
10
5 | <20
150
30
20
20
20
50
20
N | <pre><5</pre> | <10 20 N <10 <10 <10 <10 <10 <10 <10 <10 <10 | 150
100
15
10
5
30
30
5
3 | 10
20
15
15
10
<10
<10
20
20
30 | 70
30

50
15
70
20
<5
15 | <100
<100
10
<100
<100
<100
<100
700
5 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |--|---|--|--|--|---|--|---|--|--|---|--| | C33
C34
C34
C35
C35
C35
C36
C36 | 150
150
100
100
300
300
100
70 | 100
150
150
100
70
50
300
150 | <200
N
N
N
N
N
N
N | 200
300
300
500
100
150
300
300
>1,000 | N
N
N
N
N
N
. 02 | | <10
<10

10

<10
 | 90
160

<25

87
 | 40
150

32

20 | <25
<25
<25

<25

<25 |

 | | C37 C38 C38 C42 C42 CU01 CU02 CU03 CU04 CU05 CU06 | 70
70
100
100
20
7
200
15
10 | 30
50
100
150
N
30
N
30 | N
N
200
N
N
N
N
N
N | 1,500
300
>1,000
500
300
500
200
150
300
70 | N
N
N
.02
N
<.02
<.02
<.02
<.02
<.02 |

1
.9
.75
.73
.48 | <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | 150
32

107
<25
<25
<25
<25
<25
<25 | 140
<10

28
12
<10
50
<10
11
15 | <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 | | | CU07
CU08
CU09
CU10
CU11
CU12
CU13
CU14
CU15
CU16 | 15
30
N
30
7
7
N
100
100 | 10
<10
N
15
N
N
15
15 | N N N N N N N N N N N N N N N N N N N | 300
200
150
300
100
150
150
500
200 | .02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 < | .4
.8
.56
.8
.4
.28
.34
.83 | 10
20
<10
<10
<10
<10
<10
<10
<10 | 30
75
<25
30
<25
<25
<25
<25
<25 | <10 15 <10 10 10 <10 15 <10 <10 <10 10 10 10 10 | <25 <25 <25 <25 <25 <25 <25 <25 <25 <25 | | | D001
D002
D003
D004
D005
D006
D007
D008
D009
D010 | 1,000
150
700
100
30
100
300
500
300
500 | 10
20
<10
30
10
50
200
70
30
50 | <200 N <200 N N <200 <200 <200 <200 <200 | 200
100
150
100
30
150
300
300
300
200
200 | 1
.1
.02
2
.02
.02
N
N
N |

 | <10 <10 <10 <10 <10 <20 20 <10 <10 <10 | 88
60
90
<25
70
125
70
204
215 |
600
<24
540
<24
<24
300

180
<24 | 40
50
35
40
<25
40
35
95
30 | <4
2
4
2
4
8
<4
4 | | D011F
D011S
D012
D013
D014
D015
D016
D017
D018
D019 | 500
300
300
50
150
200
150
300
150 | 30
30
50
20
20
20
20
30
100 | <200
<200
<200
N
N
<200
N
<200
N | 200
300
200
70
100
300
200
300
150
300 | N
N
N
.02
.02
N
<.1
N
N | | <10
<10
<10
<10
<10
<10
<10
10 | 92
170
38
60
35
150

26
100 |
<24

600
<24
48
600

<24
<24 | 30
40
<25
<25
<25
30

<25
30
<25 | <4
4
2
<2
4

6
4
2 | | D021
D022
D023
D024
D025
D026
D027
D028
D031 | 700
200
50
300
<10
1,000
200
20
70 | <10
>200
30
30
10
<10
30
<10
30 | <200 200
1.500 <200 <200 <200 <200 <200 <200 N N | 150
1,000
200
50
200
<10
200
150
150 | .02
.02
.02
N
N
N
<.02
N |

 | <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | 120
280
120
165
115
113
189
66
31 | <10 | <25
<25
35
35
25
45
30
<25 | 4
4
<2
4
4
4
4
<4
 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct. | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|---|---|---|--|---|---------------------------------|---|---|---| | D034
D036
D037F
D037W
D038
D039
D043
D044
D046
D052 | 34 33 40
34 33 34
34 33 36
34 33 36
34 32 32
34 32 32
34 33 4
34 33 9
34 33 10
34 34 22 | 83 54 0
83 55 11
83 55 25
83 55 25
83 57 38
83 57 38
83 56 40
83 56 26
83 56 7
83 53 54 | 3
3
1.5
3
5
5
3
3
7
7 | .7
2
.5
.7
.7
.7
1
.5
.2 | .1
3
.05
.007
.005
.15
.005
<.005 | .3
.15
.15
.3
.7
.7
.7
.7 | 1,000
700
500
700
1,000
500
500
300
700
300 | N
N
N
N
N
N
N | 70
10
N
<10
100
100
100
50
<10 | 700
70
150
200
150
100
700
700
700 | 2
1
1
1
1
1
1
1
N
N | | D056
D059
D063
D067
D068
D069
D071
D074
D075
D077 | 34 35 24
34 35 55
34 37 13
34 31 19
34 31 20
34 31 21
34 31 33
34 32 34
34 32 26
34 32 2 | 83 53 8
83 53 45
83 53 33
83 54 56
83 54 57
83 54 58
83 55 44
83 57 27
83 57 21
83 57 16 | 5
5
3
7
5
3
3
5
5 | .5
.5
.7
.5
1
.3
.2
.2
.2 | .07
.1
.007
.007
.01
.007
.03
.007
.007 | .3
.7
.3
.7
.3
.2
.3
.7 | 700
700
700
2,000
3,000
7,000
300
300
500
70 | N
N
N
N
N
N
N | 700
20
N
15
30
100
N
150
150 | 500
300
150
50
200
500
300
700 | 1
2
2
N
N
1
1
1
1 | | D079
D080
D080A
D081
D082
D085
D089
D096
D098
D099 | 34 32 0
34 31 57
34 31 57
34 31 59
34 31 57
34 32 4
34 31 47
34 32 17
34 32 17
34 32 17 | 83 57 2
83 56 55
83 56 55
83 56 45
83 56 53
83 56 37
83 56 30
83 57 55
83 57 50
83 57 50 | .5
3
3
5
5
1
1.5
3 | .015 1 .5 .7 .7 .7 .5 .7 .3 | <.005
.005
.005
.01
.07
.07
.15
3 | .03
.5
.3
.7
7
3
2
3
3 | 150
200
500
300
500
1,500
300
500
700
1,500 | N
N
N
N
N
N
N | N
15
10
30
300
>2,000
N
<10
<10
<10 | 30
700
300
700
700
150
15
700
30 | N
N
N
2
2
1
N
N
N | | D103
D104
D113
D114
D115
D119
D122
D123
D124
D125 | 34 32 37
34 32 36
34 31 36
34 31 36
34 32 38
34 34 51
34 34 54
34 34 55
34 34 55
34 34 55 | 83 58 0
83 57 58
83 57 53
83 57 53
83 57 52
83 52 57
83 52 56
83 52 56
83 52 56
83 52 56 | 3
1.5
3
3
7
5
2
5 | 1
.2
.02
.05
.07
.7
.2
.15 | .05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 .007 .007 <.05 | 7
.2
.1
.15
.15
.7
7
.1
.1 | 500
200
3,000
3,000
5,000
300
700
500
200
1,000 | N
N
N
N
N
N | <10
<10
<10
10
<10
100
100
100
100
100 | 300
150
300
700
700
1,000
700
300
150 | 1
1
<1
N
2
5
1
N
1
3 | | D127
D128
D133
D137
D139
D140
D150
D151
D152
D153 | 34 33 7
34 33 4
34 34 17
34 33 57
34 33 48
34 32 33
34 32 33
34 32 34
34 32 38 | 83 57 3
83 57 3
83 56 53
83 57 43
83 57 58
83 57 58
83 53 18
83 53 18
83 53 16
83 52 38 | .7
7
7
2
3
1.5
7
10
5 | .5
1
.5
.1
.015
.1
.3
3 | 1 <.05 .07 <.05 .005 .007 .7 3 .5 .007 | .1
.7
.3
.1
.05
.07
.3
.5
.2 | 200
300
700
300
50
50
700
1,000
500 | N
N
N
N
N
N
N | N 20 10 N <10 <10 <10 <10 N N N N N N N | 500
500
700
300
30
200
70
70
300
2,000 | 1
1
1
2
N
N
1
N
2 | | D155
D160
D166
D167
D191
D195
D196
D197
D198
D199 | 34 32 32
34 30 57
34 30 7
34 30 7
34 35 15
34 31 24
34 31 24
34 31 24
34 31 24
34 31 24 | 83 53 22
83 55 10
83 56 14
83 56 14
83 57 49
83 58 29
83 58 29
83 58 29
83 58 29
83 58 29 | >10
3
7
3
.7
3
3
3
3
3 | .2
.7
.7
.3
.07
.005
.005
.007 | .07
.02
.15
.15
.07
.007
.005
.007 | .2
.3
.7
.3
.05
.15
.2
.2 | 700
700
1,500
3,000
200
7,000
7,000
10,000
7,000
7,000 | N
N
N
N
N
N
N | 200
N 15
<10
N 10
10
N N N N N | 100
150
150
70
700
500
300
500
500 | N 1 1 N N N 1 1 1 1 1 1 1 1 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|--|--|---|--|--|---|--|--|---|--| | D034
D036
D037F
D037W
D038
D039
D043
D044
D046
D052 | 30
15
5
30
50
30
15
10
30
7 | 70
70
5
30
70
50
70
70
300
70 | 70
50
3
100
200
200
20
100
200
100 | 150
N
N
150
N
N
50
N
N | N
N
N
N
N
N
N | 10
N
N
10
15
10
10
10
N
20 | 30
20
3
30
30
50
30
20
200 | 50
15
15
30
15
20
20
10 | 20
30
20
15
30
30
20
30
50 | 70
150
150
30
7
N
30
20
N | | D056
D059
D063
D067
D068
D069
D071
D074
D075
D077 | 30
20
15
30
30
30
10
20 | 50
70
50
150
30
15
30
70
70 | 100
70
150
200
150
100
30
150
70 | 70
N
N
N
30
70
N
70 | N
N
N
N
N
N
N
N | 15
15
10
N
<10
<10
10
10
15 | 20
20
30
70
50
30
20
30
30
20 | 70
70
15
10
30
20
30
15
20 | 15
30
20
70
15
10
15
50
20 | 50
50
10
N
10
7
70
15
50 | | D079
D080
D080A
D081
D082
D085
D089
D096
D098 | N
20
30
20
20
30
3
5
10 | 2
100
30
70
70
7
1
30
15
70 | 7
200
100
70
150
70
30
5
150
200 | N
70
70
N
150
N
N
N | N
5
N
N
N
N
N
N | N
10
<10
15
15
<10
N
<10
15 | 3
50
20
30
30
20
N
15
15 | N
30
15
30
30
30
50
200
20
30 | N
20
15
20
30
50
10
10
20
50 | N
30
15
70
100
70
30
500
500 | | D103
D104
D113
D114
D115
D119
D122
D123
D124
D125 | 15
15
15
15
50
70
15
15
20 | 70
N
30
30
20
150
50
10
N | 150
70
5
70
100
70
70
300
150 | 70
70
N
N
30
70
30
30
50 | N
N
N
N
N
N
N | 15
N
<10
<10
N
20
20
N
N | 30
15
5
20
20
30
30
10
20
30 | 15
20
50
50
50
50
30
30
N | 30
15
N
10
15
30
20
5
7 | 10
N
N
30
N
100
15
15
N | | D127
D128
D133
D137
D139
D140
D150
D151
D152 | 3
30
20
N
3
3
15
30
5 | 5
70
70
N
5
10
150
<10
N | 5
70
50
20
150
20
70
70 | N
30
N
70
N
N
N
N
30 | N
N
N
10
N
N
N | N
N
10
10
N
N
N
N | 3
50
30
<5
3
5
30
20
7 | 15
30
70
15
N
15
20
15
15 | N
20
20
10
N
7
50
50
20
N | 1,000
N
30
N
N
20
30
100
N | |
D155
D160
D166
D167
D191
D195
D196
D197
D198
D199 | 5
10
30
70
N
20
30
30
30
30 | 50
30
100
70
5
10
15
20
30 | 7,000
30
300
500
10
100
70
100
100 | N
70
N
N
N
N
30
N | 100
N
N
7
N
N
N
N | N
10
N
N
N
<10
<10
<10
<10 | 15
20
30
30
N
20
30
30
30 | 70
20
50
10
15
30
15
20
30 | 20
10
70
50
N
15
10
10 | 5
10
10
10
30
10
N
5
5 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |--|---|---|--|---|--|--------------------------|---|---|--|--|----------------------------------| | D034
D036
D037F
D037W
D038
D039
D043 | 100
150
70
70
150
150 | 150
15
30
70
50
30 | N
N
N
N
N | 150
50
70
200
150
200
300 | N
.5
N
N
N |

 | <10
<10
<10
<10
<10
<10
<10 | 120
<25
<25
110
150
170 | 25
21
<10
27
180
130
<10 | 30
<25
<25
<25
<25
<25
<25 |

 | | D044
D046
D052 | 150
300
150 | 15
15
30 | N
N
N | 300
70
300 | N
N
N | | <10
<10
<10 | <25
100
<25 | 26
21
30 | <25
<25
25 |
 | | D056
D059
D063
D067
D068
D069
D071
D074
D075 | 70
70
70
200
150
50
70
200
150
300 | 15
15
20
30
30
50
15
N
30 | N
N
N
N
N
N | 300
300
300
70
100
70
300
150
200 | N
N
N
N
N
N
N
N | | <10
<10
<10
<10
10
20
<10
<10
<10 | <25
29
100
90
70
27
<25
<25
73
<25 | 27
18
75
80
<10
29
<10
35
13 | 30
120
<25
<25
26
25
36
<25
<25
<25 | | | D079
D080
D080A
D081
D082
D085
D089
D096
D098 | 7
150
50
150
150
300
7
70
150
300 | N
70
30
30
100
30
100
20
70 | N N N N N N N N N N N N N N N N N N N | N
150
100
300
300
70
200
150
300
150 | N . 06 . 1 N . 1 N . 06 . 5 . 04 . 06 | | 10
10
20
<10
<10
<10
<10
<10
<10 | <25
200
120
90
110
77
30
34
<25
28 | <10
150
32
16
70
21
10
<10
85
230 | <25 <25 <25 <25 <25 <26 33 180 <25 <27 | | | D103
D104
D113
D114
D115
D119
D122
D123
D124 | 100
100
30
70
70
100
150
15
30 | 70
15
N
<10
20
50
70
20
20 | N
N
N
N
<200
N
700
3,000
700 | 200
70
50
70
70
200
300
70
30
300 | N
. 08
. 06
. 04
. 02
. 08
. 06
6. 6
2 |

 | <10

<10

<10
<10
<10 | 94
90

<25
85
100
<25
240
100
620 | 36
35

26
60
70
18
280
190
700 | <25
50

<25
75
85
<25
<25
260
27 |
N

N
N

N | | D127
D128
D133
D137
D139
D140
D150
D151
D152
D153 | 20
150
70
15
7
50
300
300
70 | 10
50
15
70
N
N
30
20
30 | N
N
N
N
N
N
N | 150
300
300
200
N
50
20
20
100
50 | N
<.02
N
<.02
.02
N
N
.08 |

 | <10

<10

<10
<10
<10

<10 | 52
100
<25
60
<25
<25
37
95
95 | 75
<10
13
45
20 | <25
<25
25
65
35 | N | | D155
D160
D166
D167
D191
D195
D196
D197
D198
D199 | 150
70
300
150
7
50
50
70
70 | 20
70
50
30
10
20
20
30
30 | 3,000
N
N
N
N
N
N
N
N | 70
150
100
50
500
70
70
70 | .06
N
N
.06
.02
N
.02
.02
N | | 30
<10
<10
<10
10
20
30
40
40 | 165
62
120
69
<25
<25
<25
<25
<25 | 12
240
400
<10
22
23
24 | <25
45
<25
<25
<25
<25
<25 | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|---|---|--|--|---|---|---|---|---| | D200
D201
DB1
DB2
DB3
DB4
DB5
DB6
DB7
DCM01 | 34 31 24
34 31 24
34 31 28
34 31 28
34 31 28
34 31 30
34 31 30
34 31 30
34 31 30
34 31 28
34 31 28 | 83 58 29
83 58 29
83 58 18
83 58 18
83 58 18
83 58 17
83 58 20
83 58 20
83 58 21
83 58 57 | 3
2
5
10
2
15
3
15
10
3 | .01
.015
.15
.5
.07
2
.15
1 | .005
.007
.005
<.05
.005
10
<.05
.05
<.05 | .15
.15
.7
.1
>1
.3
>1
.01 | 15,000
10,000
7,000
>5,000
3,000
1,500
3,000
2,000
2,000
2,000 | 1
N
N
<.5
N
<.5
<.5
<.5 | N N N 20 <10 30 <10 < < < < < < | 500
700
150
700
150
30
30
100
50 | 1
1
N
1
N
<1
<1
<1
2
<1
N | | DCM02
DCM03
DCM04
DCM05
DCM05
DCM06
DCM06
DCM07
DCM07
DCM07 | 34 31 23
34 31 24
34 31 22
34 31 21
34 31 21
34 31 21
34 31 21
34 31 21
34 31 21
34 31 21 | 83 58 57
83 58 58
83 58 58
83 59 1
83 59 1
83 59 1
83 59 1
83 59 1
83 59 1
83 59 1 | >10
10
20
10
3
10
3
5
15
>10 | .2
.5
.07
.1
.2
.1
.07
.5 | .005
<.05
<.05
<.05
.007
N
.007
.005
N | .7
.5
>1
.5
.2
.3
.3
.3 | 3,000
>5,000
1,500
>5,000
3,000
>5,000
7,000
7,000
>5,000
10,000 | N
<.5
<.5
N
N
N
1
N | 70
<10
150

10

100 | 200
700
300
700
700
700
700
700
1,000 | 2
2
<1
1
N
<1
N
1
1.5 | | DCM08 DCM09 DCM09 DCM10 DCM10 DCM11 DCM11 DCM11 DCMT01 DCMT02 DCMT04 | 34 31 21
34 31 21
34 31 21
34 31 21
34 31 21
34 31 21
34 31 19
34 31 19
34 31 19 | 83 59 1
83 58 50
83 58 46
83 58 52 | 20
10
3
15
7
20
7
7 | .1
.02
.03
<.02
.01
.02
.015
.07 | .2
N
<.005
N
.005
N
.005
.005
<.05 | .2
.2
.3
1
.7
1
.7
.15
.5 | >5,000
5,000
3,000
3,000
3,000
>5,000
7,000
5,000
1,500 | N
N
N
N
N
N
N
N | 20
70

20

15

50 | 500
300
150
200
150
500
300
500
500 | 1
<1
N
N
N
<1
N | | DCMT05 DCMT06 DCMT07 DCMT08 DCMT09 DCMT10 DCMT11 DCMT12 DCMT13 DCMT14 | 34 31 19
34 31 19
34 31 16
34 31 16
34 31 16
34 31 16
34 31 20
34 31 20
34 31 19
34 31 19 | 83 58 52
83 58 52
83 58 52
83 59 8
83 59 8
83 59 8
83 59 18
83 59 18
83 59 22
83 59 22 | 5
>10
7
7
7
10
15
20
.3 | .2
.15
.15
.2
.3
.1
.05 | <.05
.15
.007
.015
.03
<.05
<.05
<.05
<.05 | .5
.2
.15
.3
.7
1
.5
>1 | 700 100,000 7,000 10,000 1,000 >5,000 >5,000 1,500 200 10,000 | <.5
N
N
N
<.5
<.5
<.5 | 200

30
70
<10 | 500
1,000
700
200
200
700
100
<20
500 | 2
N
1
1
1
1.5
2
<1
<1 | | DCMT15
DCMT15A
DF01
DF02
DF03
DF04
DF05
DF06
DF07
DF08 | 34 31 19
34 31 19
34 31 34
34 34 | 83 59 22
83 59 22
83 57 58
83 58 | 1.5
>10
10
20
>20
20
>10
10 | .03
.2
.3
.2
2
.3
.3
.7
.15 | <.05
.02
.3
.005
<.05
<.05
.5
.05
.03 | .03
.15
.2
.7
>1
.5
.3
.3
.2 | 2,000
10,000
500
1,000
>5,000
>5,000
>5,000
30,000
20,000 | <.5
3
N
N
<.5
<.5
<.5
N
N | <10

<10
<10
<10
 | 100
300
70
70
500
700
500
500
500 | <1
1
1
N
1.5
1
<1
N | |
DF09
DF10
DF11
DF12
DF13
DF14
DF15
DF16
DF17 | 34 31 34
34 31 34
34 31 34
34 31 34
34 31 34
34 31 33
34 31 33
34 31 33
34 31 33 | 83 57 58
83 58 | >10
>10
7
1
5
7
7
7
3
7 | .7
.5
.3
.05
.15
.5
.5 | N .05
<.05
<.05
<.05
.007
.01
.01
.05
.015
<.05 | .15
.15
.3
.02
.1
.15
.15
.2 | 1,500
30,000
>5,000
1,500
10,000
7,000
2,000
7,000
3,000 | N
N
<.5
<.5
N
N
N
<.5
N | <10
<10
<10

<10

<10 | 500
700
300
70
700
700
500
300
700 | 1
1
1.5
<1
1
1
1
1.5 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-pp m
s | La-p pm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-p pm
s | Sc-ppm
s | Sr-ppm
s | |--|---|--|---|---|---|---|---|--|---|---| | D200 D201 D81 D82 D83 D84 D85 D86 D87 | 30
20
15
50
10
200
200
30
5 | 15
15
20
50
7
500
150
500 | 150
70
100
70
15
100
70
200
50 | N
N
20
N
<20
20
20
20 | N
N
< 5
N
< 5
< 5
< 5
< 5
< 5 | <10
<10
N
<10
N
<10
<10
<10
<10
N | 30
30
15
30
7
70
50
150
10 | 30
30
20
30
N
<10
<10
10
<10 | 10
7

20

70
20
100
5 | 20
20
100
<100
7
100
<100
<100
<100
N | | DCM02
DCM03
DCM04
DCM05
DCM05
DCM06
DCM06
DCM07
DCM07
DCM08 | 20
30
100
20
20
50
30
15
20 | 100
30
150
50
15
50
15
30
50 | 300
50
100
30
30
70
100
50
50 | 50
20
<20
30
30
30
30
30
30
30 | N
<5
<5
N
N
N
N
N | N <10 <10 20 10 10 <10 <10 <10 <10 <10 <10 <10 <10 | 50
20
150
30
30
30
30
30
20 | 20
20
<10
70
50
50
50
30
70 | 10
>100
30

20

30 | 5
<100
<100
<50
30
N
15
30
50 | | DCM08 DCM09 DCM10 DCM10 DCM11 DCM11 DCM11 DCMT01 DCMT02 DCMT04 | 150
50
30
70
50
150
100
50 | 200
70
30
150
100
200
150
20
70 | 300
15
50
150
150
150
150
70
50 | 50
20
N
N
N
N
N
N | N
N
N
N
N
N
N
N | 10
10
<10
10
N
15
<10
N | 50
30
30
50
50
70
70
10
15 | 50
15
15
20
20
50
30
100 | 30
10

70

70

20 | N < 50
5
N N
N N
15
< 100 | | DCMT05
DCMT06
DCMT07
DCMT08
DCMT09
DCMT10
DCMT11
DCMT11
DCMT12
DCMT13
DCMT14 | 20
150
100
20
20
20
100
150
<5
20 | 70
30
30
50
70
70
70
150
<10 | 50
150
70
100
100
70
100
200
10 | 50
70
N
30
30
50
20
<20
20 | <5
NN
NN
N
S
5
S
5
S
N
N | <10
N
N
10
15
<10
<10
<10 | 30
150
15
20
30
20
20
100
5 | 30
20
200
50
50
20
100
<10
<10 | 30

20
15
100
<5 | 100
500
300
150
10
<100
<100
<100
100 | | DCMT15
DCMT15A
DF01
DF02
DF03
DF04
DF05
DF06
DF07
DF08 | 100
100
10
30
150
200
100
100
200
50 | 20
300
150
150
200
100
20
30
30 | 20
150
150
150
300
200
70
300
150 | 20
N
50
N
50
30
20
N
N | <pre>< 5 N N N S <5 <5 N</pre> | <10
10
N
N
<10
<10
<10
N
N | 10
70
20
50
100
100
150
100
100 | <10
20
N
N
30
<10
<10
15
15 | 5

70
30
15
 | <100
15
50
70
<100
<100
<100
N | | DF09
DF10
DF11
DF12
DF13
DF14
DF15
DF16
DF17 | 15
70
50
10
30
20
20
10
30 | 70
20
15
10
20
20
30
30
50
20 | 200
200
50
20
300
150
100
50 | 30
30
20
<20
30
30
30
50
30
70 | N
N
<5
7
7
N
N
<5
N | N N N < 10 < 10 N N N N N N N N < 10 N N < 10 × N × N × N × N × N × N × N × N × N | 50
100
30
15
70
20
30
20
20 | 30
30
10
<10
50
20
15
<10
20 |
10
<5

10
-5 | 300
10
<100
<100
500
15
N
<100
15
<100 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |-----------------------|----------------------------|--------------------------|----------------------|----------------------------|----------------------|----------------|-----------------|---------------------------|----------------------------|-------------------|---------------| | D200
D201 | 70
50 | 3 0
30 | N
N
N | 50
50
3 0 | N
N
. 02 |
 | 40
60
<10 | <25
<25
<25 | 19
20
<24 | <25
<25
<25 |

4 | | DB1
DB2 | 150
200 | N
<10 | <200 | 150 | . 02 | | <10 | 200 | <24 | 35 | 4 | | DB3 | 20 | N | N | 30 | N | | <10 | <25 | 300 | <25 | 2 | | DB4
DB5 | 1,000
150 | 5 0
2 0 | <200
<20 0 | 15 0
3 0 | N
N | | <10
<10 | 115
53 | | 60
35 | 4
4 | | DB6 | 1,000 | 150 | <200 | 200 | . 04 | | <10 | 152 | | 50 | 4 | | DB7 | 100 | <10 | <200 | <10 | . 4 | | <10
20 | 170 | <24 | 35 | 4
12 | | DCM01 | 150 | 30 | 700 | 10 | . 02 | | | 410 | <24 | 25 | | | DCM02
DCM03 | 300
15 0 | 50
10 | N
<200 | 70
150 | . 02
. 4 | | <10
<10 | 75
34 | <24
 | 35
35 | <2
4 | | DCM04 | 1,000 | 10 | <200 | 200 | N | | <10 | 205 | <24 | 50 | 8 | | DCM05 | 10 0 | 30 | N | 150 | .1 | | | | | | | | DCM05
DCM06 | 70
70 | 30
2 0 | N
N | 100
150 | N
.5 | | <10
 | <25
 | <10
 | <25
 | | | DCM06 | 70
70 | 30 | Ñ | 70 | .6 | | <10 | <25 | 20 | <25 | | | DCM07 | 150 | 30 | N | 70 | N
O4 | | 10 | <25 | 11 | <25 | | | DCM07
DCM08 | 100
150 | 15
50 | N
N | 100
100 | . 04
. 3 | | 10 | 33 | 300 |

<25 | | | DCM08 | 200 | 50 |
N | 150 | .5 | | | | | | | | DCM09 | 100 | 15 | N N | 100 | .1 | | | | | | | | DCM09 | 30 | 15 | N | 100 | .1 | | <10 | <25 | 17 | <25 | | | DCM10
DCM10 | 700
300 | 30
20 | N
N | 100
100 | N
N | | <10 | 47 | 110 | <25 | | | DCM11 | 500 | 50 | Ň | 150 | N | | | | | | | | DCM11 | 300 | 30 | N | 100 | . 05 | | <10 | 55 | 28 | <25 | | | DCMT01
DCMT02 | 50
150 | N
10 | N
<200 | 30
2 00 | N
.02 | | <10
<10 | <25
85 | 15 0
<2 4 | 100
50 | 2
4 | | DCMT04 | N | N | N | N | N | | <10 | <25 | <24 | <25 | 2 | | DCMT05 | 200 | 10 | 200 | 20 0 | N | | <10 | 40 | | 35 | 15 | | DCMT06 | 150 | 15 | N | . 150 | . 2 | | 10 | 75 | 540 | 35 | <2 | | DCMT07
DCMT08 | 70
150 | 10
30 | N
N | 50
100 | . 04
. 06 | | <10
40 | <25
40 | 48
240 | 240
60 | <2
<2 | | DCMT09 | 150 | 50 | N | 200 | . 02 | | 60 | 40 | <24 | 50 | 2 | | DCMT10 | 20 0
1 50 | 70
10 | <200
<200 | 300
150 | . 02
. 02 | | 20
<10 | 135
33 | 48 | 70
150 | 4
10 | | DCMT11
DCMT12 | 1,000 | 50 | <200 | 200 | N . UZ | | <10 | 135 | <24 | 30 | 4 | | DCMT13 | <10 | <10 | <200 | <10 | N | | <10 | 70 | <24 | <25 | 4 | | DCMT14 | 70 | 10 | N | 5 0 | . 02 | | <10 | <25 | 600 | 25 | <2 | | DCMT15 | 15 | <10 | <200 | <10 | . 04 | | <10 | 55 | <24 | <25 | 4 | | DCM115A
DF01 | 300
20 0 | 20
50 | 500
N | 70
50 | .3
.2 | | <10
<10 | 135
45 | <24
<24 | <25
<25 | <2
2 | | DF02 | 30 0 | 50 | N | 70 | . 02 | | <10 | 8 0 | | <25 | 2 | | DF03 | 1,000 | 20 0 | <200 | 200 | N | | <10 | 220 | <24 | 40 | 30 | | DF04
DF05 | 500
2 00 | 30
50 | <200
<200 | 15 0
15 0 | . 1
N | | <10
<10 | 150
52 | <24
 | <25
30 | 8
6 | | DF06 | 100 | 30 | N | 100 | . 02 | | <10 | 70 | 420 | <25 | <2 | | DF07 | 70
100 | 15
20 | N
N | 70
30 | . 02
. 02 | | 10
10 | 40
85 | 60
540 | 40
35 | <2
2 | | DF08 | | | | | | | | | | | | | DF 0 9
DF10 | 30 0
150 | 20
30 | N
N | 70
50 | . 0 6
. 06 | | <10
<10 | 70
95 | | <25
40 | <2
2 | | DF11 | 50 | 20 | <200 | 70 | .02 | | <10 | 125 | | 35 | 4 | | DF12 | <10 | <10 | <200 | <10 | N | | <10 | 140 | <24 | 25 | <4 | | DF13
DF14 | 100
50 | 2 0
30 | N
N | 30
50 | . 0 2
. 02 | | 10
<10 | 11 0
5 0 | | | 4
2 | | DF15 | 50 | 50 | N | 50 | . 02 | | 10 | 80 | 120 | <25 | 2 | | DF16 | 50
100 | 30
70 | <200
N | 5 0
5 0 | . 02
. 1 | | <10
30 | 155 | | | <4
4 | | DF17
DF18 | 10 0
50 | 70
50 | <200 | 50
50 | .1 | | 40 | 90
140 | | | 4 | | | _ | • | • | | | | | | | | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitud e | Longitude | Fe-pct. | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|---|--|---|--|--|--|---|--|--| | DF19 DF20 DF20 DF21 DF22 DF23 DF24 DF25 DF26 DF27 | 34 31 33
34 31 33
34 31 31
34 31 | 83 57 58
83 57 58
83 57 58
83 58 0
83 58 0
83 58 0
83 58 0
83 58 0
83 58 0
83 58 0 | 5
15
7
7
5
7
10
10
>10 | .2
1.5
.5
.5
.2
.15
.02
.07
.1 | .005
<.05
.015
<.05
.007
.005
<.05
N | .15
1
.2
.3
.15
.15
.005
.7
.7 | 5,000
1,500
10,000
>5,000
5,000
5,000
3,000
3,000
700 | N
<5
N
<5
N
N
<5
N | 30

10

<10

10 | 700
1,000
700
1,000
500
700
20
70
700
50 | 1
1.5
1.5
2
N
1
<1
N | | DF28 DF29 DF30 DF31 DF32 DF33 DF34 DF35 DF36 DF37 | 34 31 33
34 31 33
34 31 33
34 31 33
34 31 33
34 31 33
34 31 29
34 31 29
34 31 29 | 83 58 3
83 3 | 10
10
2
.5
7
10
>10
10
15 | .15
1.5
.05
.015
.7
.2
.7
.07 | .005
.15
.1
.02
.1
.015
.1
.007
.05 | .2
.3
.02
.005
.15
.15
.7
.2 | 2,000
10,000
3,000
200
7,000
5,000
10,000
>5,000
1,500 | N
N
N
N
N
N
N
N
S
S
S
S
S
S
S
S
S
S
S
S |

10
<10 | 700
1,000
200
30
700
500
200
300
500 | 1
1.5
N
N
1
1
N
N
1 | | DF38 DF39 DFT1 DFT1 DFT2 DFT2 DFT3 DFT3 DFT4 DFT4 | 34 31 32
34 31 32
34 31 10
34 10 | 83 57 53
83 57 53
83 59 12
83 12 | 15
15
10
3
7
10
10
3
15 | 7
7
7
<.02
.015
.2
.05
.02
.05
.5 | 1.5
1.5
N
.005
.01
<.05
<.05
<.005
<.05 | .2
.15
.1
.07
.7
>1
.3
.15 | >5,000
>5,000
200
150
150
500
700
300
500
100 | <.5
<.5
N
N
N
N
N
N | 10
<10
<10

20
N

50 | 1,000
1,500
100
100
500
500
200
150
1,000 | 2
2
<1
N
1
1
<1
N | | DH01 DH02 DH02 DH03 DH03 DH04 DH04 DH05 DH05 | 34 32 15
34 32 15
34 32 15
34 32 15
34 32 14
34 32 14
34 32 13
34 32 13
34 32 13
34 32 13 | 83 58 30
83 58 30
83 58 30
83 58 30
83 58 28
83 58 28
83 58 24
83 58 24
83 58 24
83 58 24 | 15
7
1
2
3
1.5
1
2
2 | .02
.03
.1
.2
.05
.07
.2
.5
1.5 | <.05
<.005
.005
<.05
.2
.3
.5
1 | .05
.015
.07
.1
.1
.1
.1
.1 | >5,000
7,000
500
700
500
200
200
1,500
2,000 | N
N
N
N
N
N
1
1 | <10

<10
N

10

<10 | 700
500
300
500
150
150
500
200 | 1.5
N
N
1
<1
N
N
1
N | | DH06
DH07
DH07
DH07
DH09
DH09
DH11
DH11
DH12
DH12 | 34 32 13
34 32 13
34 32 13
34 32 13
34 32 13
34 32 13
34 32 14
34 32 14
34 32 14
34 32 14 | 83 58 24
83 58 24
83 58 24
83 58 24
83 58 24
83 58 24
83 58 21
83 58 21
83 58 21
83 58 21 | 1.5
1
7
3
7
3
10
3
5 | .2
.2
2
2
1.5
1
.1
1.5 | .5
.5
1.5
3
1
2
<.05
.05 | .2
.15
1
.15
.7
.7
.5
.7 | 1,000
700
700
700
700
500
700
500
700
500 | 5
1
.5
N
N
N
1
N | <10

20

70

N

N | 500
500
700
700
700
700
1,000
700
1,000
700 | <1
N
1
2
2
3
1.5
1 | | DH13
DH14
DH16
OH17
D101
D101
D102
D102
D103 | 34 32 14
34 32 14
34 32 12
34 32 12
34 31 22
34 31 22
34 31 22
34 31 22
34 31 22
34 31 22 | 83 58 28
83 58 28
83 58 27
83 58 27
83 59 56
83 59 56
83 59 56
83 59 56 | 1
.3
7
1.5
1.5
7
15
10
3 | .1
.2
1.5
.2
.2
.2
3
3
1.5
1.5 | 1
.7
1
.05
.05
>10
5
1.5
3 | .1
.7
.7
.1
.15
.5
.7
.7 | 50
30
700
300
700
1,500
3,000
700
500
700 | N
N
N
.5
.7
N
.7
N
N | <10

50
<10
<10

<10
N | 500
500
500
1,000
70
150
300
300
200 | 1
N
1
1.5
1.5
N
N
<1
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|--|---|---|---|--|--|--|--|---|--| | DF19 DF20 DF20 DF21 DF22 DF23 DF24 DF25 DF26 DF27 | 15
30
30
20
15
20
<5
70
30
<5 | 20
100
30
30
20
20
15
30
150
20 | 150
50
100
100
100
20
200
150
20 | 50
30
50
30
30
N
20
N | N <5
N <5
N N <5
N N <5 | N <10 N <10 N N N N N N N N N N N N N N N N N N N | 20
30
30
20
10
15
5
50 | 15
15
30
30
50
30
<10
10
50
<10 | 15

15

<5

5 | 300
<100
10
<100
10
300
<100
N
15
<100 | | DF28
DF29
DF30
DF31
DF32
DF33
DF34
DF35
DF36
DF37 | 20
30
7
N
50
50
70
50
30 |
20
70
5
5
20
30
150
10
50
<10 | 30
700
100
15
150
300
500
150
100
30 | 30
100
N
N
30
30
70
N
70 | N
N
N
N
N
N
<5
<5 | N
N
N
N
N
N
N
<10
<10 | 15
50
7
N
30
30
100
30
50 | 70
70
10
N
50
30
N
30
30 |

15
<5 | 10
700
100
N
500
7
10
N
<100
<100 | | DF38 DF39 DFT1 DFT1 DFT2 DFT2 DFT3 DFT3 DFT4 DFT4 | 100
50
10
10
7
10
50
30
10 | 100
50
20
15
70
100
30
15
150
70 | 70
100
10
70
70
50
15
50
30 | 70
20
20
30
N
N
N
N | 10
5
N
N
N
N
N
N | 20
10
<10
N
10
20
10
<10
20
<10 | 70
50
2
10
20
30
15
7
50
20 | 200
200
10
10
20
50
10
15
70 | 50
30
5

70
20

50 | 150
200
N
N
30
N
N
10
70 | | DH01 DH01 DH02 DH02 DH03 DH03 DH04 DH04 DH05 DH05 | 50
50
15
15
20
20
5
10 | 10
5
3
N
N
2
7
N
15 | 5
20
20
10
20
30
15
10
200 | N
N
N
20
N
N
<20
N | 15
N
N
N
N
N
N
10
30 | 10
N
N
10
10
N
N
10
N | 5
10
15
15
15
15
7
5
50
30 | 70
70
15
20
10
10
30
70
15
30 | 20

7
5

5

7 | N N 30 70 700 300 500 500 500 | | DH06
DH06
DH07
DH07
DH09
DH09
DH11
DH11
DH12
DH12 | 5
7
20
20
20
20
50
30
20 | 20
10
100
70
100
70
100
50
150 | 100
70
100
100
20
30
150
150
300
500 | <20
N
30
30
20
N
30
30
50 | N N N N N N N N N N N N N N N N N N N | N
N
10
10
15
15
10
15
15 | 5
5
30
50
30
50
30
30
30
30 | 15
15
15
15
20
20
20
20
20
10
20 | 5

20

20

20

30 | 500
300
300
200
300
200
<50
15
50
30 | | DH13 DH14 DH16 DH17 DI01 DI01 DI02 DI02 DI03 | N
N
20
50
50
30
70
20
20 | N
1
150
N
<10
150
200
30
30
50 | 5
7
30
15
30
150
200
200
150
15 | N
N
70
N
N
N
30
70 | N
N
N
N
N
N
N
N
N | <10
N
10
<10
10
10
10
10
10
10 | 2
3
50
20
20
50
50
<2
10
2 | 20
15
20
30
30
20
70
50
20
30 | <5

20
5
<5

70
15

20 | 1,000
700
300
150
200
150
300
300
200
200 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |---|---|---|--|--|---|----------------------|---|---|--|---|--------------------------------------| | DF19
DF20
DF20
DF21
DF22
DF23 | 30
200
70
100
30
70 | 15
50
50
20
10 | N
<200
N
<200
N | 50
300
50
150
50
50 | .02
N
.04
.02
.02 |

 | <10
<10
10
<10
<10
<10 | 25
235
95
140
30
30 | <24
<24
360
<24
360
<24 | <25
35
50
40
40
40 | 2
8
2
4
<2
<2 | | DF24
DF25
DF26
DF27 | 20
300
700
20 | <10
10
30
<10 | <200
N
N
<200 | <10
100
70
<10 | N
. 04
N
N |

 | <10
<10
<10
<10 | 155
35
<25
280 | <24
600
480
<24 | 30
35
50
40 | 4
<2
<2
<4 | | DF28 DF29 DF30 DF31 DF32 DF33 DF34 DF35 DF36 DF37 | 100
200
10
N
70
100
300
70
150 | 10
30
30
N
20
10
10
10
30
<10 | N
N
N
N
N
N
<200 | 50
100
10
N
50
50
70
50
150
<10 | .06
1
.02
N
.04
.1
.06
.1 | | <10
<10
10
10
30
10
<10
300
100 | <25
90
<25
<25
30
65
40
<25
140 | 120
<24
240
<24
<24
960
1,080
240
<24
<24 | 50
50
25
<25
25
40
25
40
35
25 | 2 <2 2 <2 <2 <2 <2 <2 <2 <42 <42 <44 | | DF38 DF39 DFT1 DFT1 DFT2 DFT2 DFT3 DFT3 DFT4 DFT4 | 150
150
70
30
200
300
150
50
300
150 | 50
50
10
10
30
50
50
15
50 | <200
<200
N
N
N
N
N
N | 150
70
20
200
200
300
100
50
100 | <.02
<.02
5
4.7
.1
.4
.2
.2
.06 | .16 | <10
10

60
100

40

60 | 80
40

<25
<25

25

<25 | 50
40

16
20

16

13 | <25
<25

<25
<25

<25

<25 |

 | | DH01 DH01 DH02 DH02 DH03 DH03 DH04 DH04 DH05 DH05 | 20
10
20
20
10
10
30
50
30 | 30
30
N
10
20
30
10
10
15
20 | N N N N N N N N N N N N N N N N N N N | 20
N
100
150
100
100
70
150
100
150 | .4
.4
.2
.2
.2
.1
1.2
1.2
4.9 |

 | <10
<10
<10
<10
<10
<10 | 78
<25

<25
<25

30 | <10
<10

24
10

140 | 140
<25

<25
25

<25 | | | DH06 DH07 DH07 DH07 DH09 DH09 DH11 DH11 DH12 DH12 | 70
50
100
150
100
150
150
150
300 | 10
15
30
30
30
70
70
70
50 | N
N
N
N
N
N
N | 150
200
300
300
200
300
300
300
500 | 3.4
3
.04
N
.02
.07
15
7.9
4
2.8 |

 | <10
<10
<10

10

10 |
<25

78

26

50

72 | 44
48

18

120

430 | <25
<25
<25
<25

<25

<25 | | | DH13 DH14 DH16 DH17 DI01 DI01 DI02 DI02 DI03 | 20
15
100
50
50
300
300
150
150 | <10
N
50
15
20
50
50
50
150
70 | N
N
N
N
N
N
N
N | 150
100
200
150
150
70
100
200
500 | .06
N
.05
1.8
3.5
.1
.1
2.5
2.6 |

 | <10
<10
<10
10
<10

<10 | <pre><25 28 <25 <25 <25 38 35</pre> | <10
20
<10
<10
120

130 | <25
<25
<25
<25
<25
<25
<25 | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|---|---|--|--|--|---|---|---|---| | DI03
DI05
DI05
DI06
DI06
DI07
DI07
DI08
DI08
DI08 | 34 31 22
34 31 22
34 31 25
34 50 | 83 59 56
83 59 55
83 59 55
83 59 51
83 59 51
83 59 51
83 59 51
83 59 51
83 59 51
83 57 51 | 3
.02
.1
10
7
5
15
15
15
7 | 1.5
<.02
.015
.02
.3
.15
.02
.7
.7 | 3
<.05
.007
<.05
.07
.05
N
N | .7
.07
.03
.7
.3
.3
.7
>1
.7 | 700
50
50
2,000
1,500
2,000
5,000
3,000
1,500
7,000 | N
N
N
N
N
N
N | N

10

<10
10 | 150
30
15
150
150
200
150
70
1,500 | N <1 N 1.5 2 1 1 1 1 3 | | DL1
DL2
DL2
DL3
DL3
DL4
DL4
DL5
DL5 | 34 31 50
34 51
34 31 51
34 31 51 | 83 57 51
83 50
83 57 50
83 57 50 | 7
1.5
2
3
10
3
10
15
5 | .7
.3
.3
.15
.5
.3
.5
.7 | <.05
.005
<.05
.07
<.05
.05
<.05
<.05 | .2
.1
.15
.3
.15
.3
.5
.5 | >5,000
5,000
>5,000
10,000
>5,000
7,000
>5,000
>5,000
15,000
>5,000 | N
N
N
1
N
N
N
N
N | <10

<10

10

<10
20

10 | 1,500
700
1,000
700
1,000
500
1,000
1,500
1,000 | 2
2
1.5
2
1.5
1
1
1.5
2 | | DL6
DL7
DL7
DL8
DL8
DL9
DL9
DP01
DP02
DP03 | 34 31 51
34 21
34 31 21
34 31 21 | 83 57 50
83 58 44
83 58 44 | 3
5
3
7
>10
15
7
7 | .5
.7
.7
.7
.7
3
.07
.15 | .1
<.05
.03
.1
.05
5
3
.015
.005 | .2
.7
.2
.2
.5
.7
.7
.1
.2 |
15,000
5,000
3,000
7,000
>5,000
10,000
>5,000
10,000
700
300 | 1.5
N
N
N
N
N
N
N | <10

10

10
 | 700
1,000
1,000
1,000
1,500
300
500
700
700 | 2
2
2
3
2
1
<1
N
1 | | DP04
DP05
DP06
DP07
DP08
DP09
DP10
DP11
DP12
DP13 | 34 31 21
34 31 21
34 31 20
34 31 20
34 31 20
34 31 20
34 31 20
34 31 20
34 31 24
34 31 24 | 83 58 44
83 58 44
83 58 43
83 58 43
83 58 43
83 58 43
83 58 43
83 58 43
83 58 38
83 58 38 | 7
7
7
7
7
10
7
2
7 | .07
.1
.1
.2
.05
.3
.02
.03
.1 | .01
.005
.005
.005
.005
<.05
.005
<.05 | .15
.15
.15
.15
.15
.5
.15
.2 | 7,000
15,000
10,000
3,000
10,000
>5,000
7,000
>5,000
3,000
5,000 | N
N
N
N
< .5
N
< .5 | 30
 | 500
300
500
700
700
1,000
700
150
500
300 | N 1 N 1 1 2 N < 1 1 N N | | DP14 DS1 DS1 DS2 DS3 DS3 DA001 DA001 DA002 DA002 | 34 31 24
34 32 6
34 32 6
34 32 6
34 32 6
34 32 6
34 29 23
34 29 23
34 29 23 | 83 58 38
83 57 55
83 57 55
83 57 55
83 57 55
83 57 55
84 1 15
84 1 15
84 1 15 | 7
.5
1
3
1
2
3
5
10
7 | .5
.05
.02
.5
.7
1
.2
.07 | .02
.007
.05
.07
3
1
.005
<.05
<.05 | .15
.03
1
.15
.2
.3
.2
.5 | 10,000
200
700
200
150
500
2,000
1,500
2,000 | N
N
N
N
N
N | N 70 N <10 <10 | 700
50
100
700
700
700
50
100
150 | 1
N
<1
2
N
<1
1
<1
<1 | | DA004
DA004
DA006
DA006
DA007
DA007
DA008
DA008
DA009
DA009 | 34 29 23
34 29 36
34 29 36
34 29 36
34 29 36
34 29 34
34 29 34
34 29 34
34 29 34 | 84 1 16
84 1 16
84 1 16
84 1 16
84 1 16
84 1 15
84 1 15
84 1 15
84 1 15 | 10
5
15
7
2
2
3
5
10
>10 | .1
.5
<.02
.015
<.02
.015
.03
.02
.02 | <.05
.005
<.05
.007
.005
.005
<.05
<.05 | .7
.3
.7
1.5
.5
.2
.2
.5
>1 | 1,000
1,500
1,000
3,000
1,000
1,500
3,000
3,000
3,000
3,000 | N
N
N
N
N
N | <10

<10

<10

<10
20 | 70
30
50
70
100
70
70
50
100 | <1
N
N
N
N
N
N
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|---|---|--|---|--|---|--|---|---|---| | DI03
DI05
DI05
DI06
DI06
DI07
DI07
DI08
DI08
DL1 | 15
N
N
70
70
50
100
70
50 | 20
10
1
100
150
70
70
100
70 | 30
5
1
70
150
150
100
200
200
50 | 70
N
N
20
70
N
<20
30
N | N
N
N
N
N
N
N | 15
<10
N
<10
<10
N
<10
<10
10 | 15
N
N
50
100
70
70
30
50 | 15
<10
N
15
20
50
50
50
50 |
N

70

50
70
 | 150
N
N
5
5
N
N
N | | DL1
DL2
DL2
DL3
DL3
DL4
DL4
DL5
DL5 | 10
10
30
70
20
30
50
30 | 15
7
10
30
70
20
30
50
30 | 50
70
20
150
150
70
150
200
100
300 | 50
30
30
150
150
20
20
20
N | N
N
N
N
N
N
N | 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 < | 30
20
20
20
20
20
20
50
30
50 | 70
70
70
50
30
30
70
100
70 | 10

5

15

10
15

15 | <50
15
N
30
50
15
N
N
30
<50 | | DL6 DL7 DL8 DL8 DL9 DL9 DP01 DP02 DP03 | 20
20
15
20
50
30
50
50
20 | 30
50
30
30
30
100
150
30
30 | 150
150
150
150
150
300
500
300
50
20 | N
<20
N
N
<20
N
<20
30
N | N
N
N
N
N
15
N | <10
<10
<10
10
<10
N
<10
10 | 30
20
20
20
30
30
100
30
20 | 30
10
20
70
70
15
20
20
50 | 10

10

70
 | 30
<50
30
30
<50
150
200
15
300
70 | | DP04
DP05
DP06
DP07
DP08
DP09
DP10
DP11
DP12
DP13 | 20
30
20
20
20
100
15
<5
30 | 10
20
15
30
10
70
10
10
100
30 | 100
70
100
200
70
500
70
70
100 | N
N
N
N
30
N
20
30 | N
N
N
15
N
<5
N
<5 | N
10
N
10
N
<10
10
<10 | 20
30
15
15
10
150
10
100
30 | 15
50
50
100
15
<10
15
20 |

20

5 | 300
7
10
15
7
<100
5
<100
300
10 | | DP14 DS1 DS1 DS2 DS3 DS3 DA001 DA001 DA002 DA002 | 20
7
5
N
7
10

100
50 | 20
3
10
N
7
20
30
100
150 | 100
10
10
30
2
5
100
100
100 | 30
N
N
20
N
20
N
<20
20 | N
N
N
N
N
N | N
N
<10
N
N
<10
N
10 | 20
5
2
5
7
5
30
30
50 | 70
10
<10
50
50
50
10
15 |
N
10

7

50
70 | 15
5
<50
100
300
700
10
<50
N | | DA004
DA004
DA006
DA006
DA007
DA007
DA008
DA008
DA009
DA009 | 50

150

200

500
700
200 | 50
30
70
70
10
15
70
100
300
200 | 150
150
150
150
70
70
150
150
200 | N
N
N
N
N
N
<20
N | N N N N N N N N N N N N N N N N N N N | 10 <10 10 10 <10 <10 <10 N <10 10 <10 10 | 30
30
100
100
30
30
70
70
200 | 15
10
20
20
50
30
30
70
200 | 50

50

15

50
100 | N
7
N
N
5
5
N
N
7 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-pp m
s | Zr-pp m
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-p pm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |----------------------------------|------------------|------------------|---------------------|---------------------|--------------------|----------------|--------------|----------------------|-----------------------|--------------------|--------------| | D103 | 150 | 150 | N | 300 | . 09 | | <10 | 55 | 16 | <25 | | | DI 05
DI 05 | <10
N | N
N | N
N | 10
N | N
N | | <10 |
<25 | <10 |
< 25 | | | DI06 | 300 | 70 | N | 150 | .8 | | | | | | | | DIO6 | 300 | 150 | N | 100 | 1.8 | | <10 | 130 | 52 | <25 | | | DI 07
DI 07 | 150
200 | 70
50 | N
N | 100
150 | 1.5
2.2 | | <10
 | 60
 | 45
 | 41 | | | DIO8 | 300 | 150 | N | 200 | .1 | | | | | | | | DI 08 | 30D | 150 | N
N | 150
100 | .06
N | | <10
<10 | 95
71 | 140
17 | 26
-25 | | | DL1 | 70 | 150 | N | | | | <10 | /1 | 17 | <25 | | | DL1
DL2 | 70
30 | 100
30 | N
N | 15 0
50 | . 04
. 08 | |
<10 | 52 | 26 | 40 | | | DL2 | 70 | 50 | Ň | 100 | .08 | | | | | | | | DL3 | 70 | 30 | N | 70 | .1 | | <10 | 46 | 50 | <25 | | | DL3
DL4 | 70
7 0 | 50
20 | N
N | 150
70 | .08
N | | <10 | 44 | 33 | 33 | | | DL4 | 100 | 20 | Ň | 15 0 | .1 | | | | | | | | DL5 | 100 | 30 | N | 150 | N | | -10 | | | | | | DL5
DL6 | 70
70 | 7 0
50 | N
N | 70
150 | .05
.9 | | <10 | 59
 | 40
 | <25
 | | | DL6 | 70 | 70 | N | 70 | . 2 | | <10 | 78 | 44 | -25 | | | DL7 | 100 | 20 | N | 100 | .7 | | | | | <25
 | | | DL7 | 70 | 30 | N | 70 | .3 | | 10 | 42 | 52 | <25 | | | DL8
DL8 | 70
100 | 30
20 | N
N | 70
15 0 | .6
.6 | | <10 | 61
 | 110 | <25
 | | | DL9 | 200 | 150 | N | 70 | 1.7 | | <10 | 100 | 360 | <25 | | | DL9 | 30 0 | 70 | 300 | 100
70 | 2. 6
.06 | | | | | | | | DP01
DP02 | 50
50 | 20
15 | N
N | 50 | . 02 | | <10
<10 | 40
35 | <24
<24 | <25
45 | <2
<2 | | DP03 | 10 | N | N | 10 | . 02 | | <10 | <25 | <24 | 25 | 2 | | DP04 | 50 | 15 | N | 50 | . 04 | | <10 | <25 | <24 | 25 | <2 | | DP05 | 50 | 70 | N | 50 | . 02 | | 20 | 40 | <24 | 3 0 | <2 | | DP06
DP07 | 50
100 | 10
15 | N
N | ″ 30
50 | . 02
. 1 | | 20
10 | <25
35 | 180
<2 4 | <25
25 | 2
10 | | DP08 | 50 | 10 | Ň | 30 | . 02 | | <10 | 30 | 120 | < 2 5 | 2 | | DP09 | 150 | 30 | <200 | 150 | . 02 | | <10 | 200 | <24 | <25 | 8 | | DP10
DP11 | 50
10 | 20
<10 | N
<200 | 50
30 | .3
.04 | | <10
<10 | 30
81 | <24
 | <25
50 | 2
<4 | | DP12 | 150 | 10 | N | 50 | . 04 | | <10 | 30 | 48 | 30 | <2 | | DP13 | 50 | 15 | N | 20 | . 06 | | <10 | <25 | <24 | <25 | 2 | | DP14 | 50 | 70 | N | 70 | . 02 | | <10 | 60 | <24 | 30 | <2 | | DS1
DS1 | 10
20 | N
10 | N
N | 15
3 0 | . 06
. 04 | | 10 | <25 | <10
 | <25 | | | DS2 | 70 | <10 | N N | 100 | .3 | | | 90 | 20 | 35
| N | | DS3 | 30 | 10 | N | 150 | .07 | | 10 | <25 | <10 | <25 | | | DS3
D A00 1 | 70
70 | <10
70 | N
N | 200
20 | . 1
N | | <10 | 25 | 35 | <25 | | | DA001 | 150 | 7 0 | Ñ | 70 | Ň | | | | | | | | DA002 | 300 | 100 | N | 70
70 | N | | -10 | | | | | | DA002 | 150 | 100 | N | 70 | N | | <10 | 52 | 39 | <25 | | | DA004
DA004 | 200
150 | 30
30 | N
N | 200
150 | N
N | | <10 |
40 | 41 |
<25 | | | DA004 | 300 | 30
15 | N
N | 150 | N | | -10 | 40 | 41 | | | | DA006 | 300 | 30 | N | 150 | N | | <10 | 49 | 45 | <25 | | | DA007
DA007 | 200
70 | 1 0
10 | N
N | 70
50 | N
N | | <10 |
<25 | 39 | 44 | | | D A008 | 150 | 15 | N | 50 | N | | <10 | 33 | 46 | 35 | | | D AO 08
D AO 09 | 300
700 | 10
30 | N
N | 70
150 | N
N | | | | | | | | DA009 | 30 0 | 30 | N | 150 | N | | <10 | 66 | 52 | 220 | | | | | | | | | | | | | | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|---|--|--|--|--|--|--|---|---| | DA010
DA010
DA011
DA011
DA012
DA012
DA013
DA013
DA015 | 34 29 33
34 29 34
34 29 34
34 29 34
34 29 34
34 29 34
34 29 34
34 29 28
34 29 28 | 84 1 13
84 1 13
84 1 11
84 1 11
84 1 11
84 1 11
84 1 11
84 1 11
84 1 23
84 1 23 | 1
3
3
7
7
10
2
1.5
7 | .15
.3
1
.5
.015
.05
.2
.3
.7 | .005 <.05 .01 <.05 .005 <.05 .005 <.05 .005 .005 .005 | .2
.3
.7
.7
.7
1
.3
.2
.3 | 300
500
10,000
>5,000
1,500
700
700
1,500
1,500 | N
N
<1
N
N
N
N
N
N | <10

<10

10
<10

<10 | 700
700
700
700
50
70
500
70
100 | N <1 N <1 N 1 <1 N N 1 N N N N N N N N N | | DA016
DA016
DA017
DA017
DA020
DA020
DA021
DA021
DA022
DA022 | 34 29 28
34 29 28
34 29 28
34 29 28
34 29 48
34 29 54
34 29 54
34 29 54
34 29 54
34 29 54 | 84 1 23
84 1 23
84 1 23
84 1 23
84 2 14
84 2 14
84 2 15
84 2 15
84 2 15
84 2 15 | 5
3
7
5
3
15
>10
>10 | 1
.5
.7
1
.5
1
.7
.2
.05 | <.05
.005
.005
<.05
<.05
.07
<.05
.07 | .7
.3
.7
1
.7
.3
.5
.3
.2 | 700
700
1,000
1,000
1,000
1,500
150
150
100 | N
N
N
N
N
N
10 | <10

10
20

700

30 | 300
150
300
700
500
300
>5,000
7,000
20,000
>5,000 | <1
N
N
<1
1
N
2
2
N | | DA024
DA024
DA025
DA025
DA028
DA028
DA029
DA029
DA030
DA030 | 34 28 23
34 28 23
34 28 23
34 28 23
34 28 31
34 28 31
34 28 31
34 28 31
34 28 31
34 28 31 | 84 2 30
84 2 30
84 2 30
84 2 30
84 2 29
84 2 29
84 2 29
84 2 29
84 2 29
84 2 29 | 7
5
5
10
10
5
7
3
3 | 1.5
1.5
1
.7
1
1
1
.5
.7 | 1.5
1
1
1.5
.05
.15
.1
.15
.02
<.05 | .5
.3
.5
.5
.3
.5
.2
.3 | 500
300
500
500
700
700
700
700
500
700 | N N N N N N N N N N N N N N N N N N N | 10

<10
<10

N

20 | 2,000
1,000
700
700
2,000
1,500
700
1,500
3,000 | <1
N
N
<1
1.5
1
1.5
1
1.5 | | DA031
DA032
DA032
DA032
DA037
DA037
DA038
DA038
DA042
DA042 | 34 28 31
34 28 31
34 28 31
34 28 31
34 29 7
34 29 7
34 29 7
34 29 7
34 28 43
34 28 43 | 84 2 29
84 2 29
84 2 29
84 1 22
84 1 22
84 1 22
84 1 22
84 1 31
84 1 31 | 10
5
1.5
1.5
3
2
>10
10
5 | 1
.7
.3
.2
.02
.02
.02
<.02
<.02
.2 | N
.01
.01
N
.005
N
.005
N
.007 | .5
.3
.2
.3
.2
.2
.5
.7 | 1,500
1,000
700
500
3,000
2,000
3,000
2,000
3,000
3,000 | N
N
N
N
N
N | 15

20

N

15 | 3,000
700
1,000
1,500
50
70
100
150
100
200 | 1.5
1
N
1
N
<1
N
<1 | | DA043
DA044
DA044
DA045
DA045
DA046
DA046
DA047 | 34 28 43
34 28 43
34 28 43
34 28 43
34 28 43
34 28 42
34 28 42
34 28 42
34 28 42 | 84 1 31
84 1 31
84 1 31
84 1 30
84 1 30
84 1 30
84 1 30
84 1 30
84 1 30 | 7
5
10
7
7
7
2
2
3
3 | .5
.5
.03
.02
.2
.1
.5
.7 | .005
N
N
.005
.02
N
.02
N
.03 | .5
.7
.3
.2
.5
.2
.3
.3 | 1,000
1,500
2,000
3,000
3,000
5,000
500
700
500 | N
N
N
N
N
N
N | <10
10

20

<10
N | 100
200
150
70
100
150
300
700
500 | N <1 <1 N 1 N <1 N N <1 N N <1 N N N N N | | DA048 DA049 DA049 DA050 DA050 DA051 DA051 DA052 DA052 | 34 28 42
34 42 | 84 1 30
84 30 | 5
3
2
3
2
3
5
1.5 | .7
.7
.3
.5
.2
.3
.5
.5 | N
. 02
N
. 02
N
. 005
. 007
N
N | .5
.3
.5
.2
.3
.2
.3
.5
.5 | 700
500
1,000
500
1,000
500
1,500
1,500
1,000
700 | N
N
N
N
N
N
N
N | N

N

N

10
<10 | 700
300
700
300
500
300
500
700
500
200 | 1
1
1
N
1
N
N
1 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|--|--|--|---|---|---|---|---|--|---| | DA010
DA010
DA011
DA011
DA012
DA012
DA013
DA013
DA015
DA015 | 7
10
150
300
30
20
15
15
15 | 15
10
150
200
20
30
15
10
70 | 20
10
200
300
150
200
30
30
200
200 | N
N
70
70
N
N
N
N
30
30 | N
N
N
N
<5
N
N
N | <10
15
N
<10
<10
<10
10
10
10 | 10
15
50
100
30
30
15
15 | 30
100
30
150
10
30
20
15
20 |
20

70

70
20

70 | 15
N
N
N
15
N
N
5 | | DA016 DA017 DA017 DA020 DA020 DA021 DA021 DA022 DA022 | 20
15
20
20
20
30
10
7
5 | 100
50
50
100
100
30
20
15
10 | 100
70
100
150
70
70
100
50
70 | 70
30
30
50
50
N
N
N | N
N
N
N
N
N
N
N
N | 10
<10
10
15
15
10
<10
N | 50
20
20
50
30
20
5
3
5 | 20
15
150
500
50
30
100
30
30
70 | 20

30
20

70

15 | N
N
15
N
N
15
100
30
1,000
300 | | DA024 DA025 DA025 DA025 DA028 DA028 DA029 DA029 DA029 DA030 DA030 | 20
20
20
20
20
30
20
30
30
30 | 50
30
30
70
70
50
50
20
30 | 200
150
150
200
300
150
150
70
100 | 30
N
30
30
70
70
70
50
N | <5
N
10
20
5
N
10
N
7 | <10
10
10
<10
10
10
10
10
10 | 50
30
30
50
50
30
20
20
30
30 | 70
50
100
150
150
70
70
30
30 | 20

15
20

15

30 | 150
150
150
150
10
50
15
15
15 | | DA031
DA032
DA032
DA032
DA037
DA037
DA038
DA038
DA042
DA042 | 150
70
30
20
200
300
200
150
50 | 70
30
15
20
70
100
300
300
150 | 200
100
50
20
150
150
200
100
100
150 | 50
50
70
70
70
70
50
N
N
N | 30
10
N
N
N
N
N
N | 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 < | 50
30
15
5
50
50
150
100
50
70 | 100
50
70
150
15
50
15
50
15 | 50

10

30

70

50 | N
15
5
N
N
N
5
N | | DA043
DA044
DA044
DA045
DA045
DA045
DA046
DA046
DA047 | 30
30
150
70
150
300
15
15 | 70
50
150
70
50
70
15
20
10 |
150
150
200
200
150
200
30
30
30 | N
N
N
30
50
30
50
50 | N
N
N
N
N
N
N | N <10
10
N N
10
10
15
15 | 30
30
70
50
50
70
10
5 | 10
30
50
20
30
50
10
20
50 | 50
70

70

15
15 | N
N
S
S
N
S
N
N
7 | | DA048
DA048
DA049
DA049
DA050
DA050
DA051
DA051
DA052
DA052 | 15
15
15
15
15
15
50
70
15 | 20
15
20
10
20
10
15
20
50 | 70
30
70
30
70
30
30
70
70 | 30
N
20
N
20
N
N
N
30 | N N N N N N N N N N N N N N N N N N N | 15
15
15
10
20
10
10
15
20 | 5
10
30
20
30
20
20
20
20 | 50
15
50
15
50
10
20
70
50 | 20

20

30

30
20 | N
5
N
5
N
15
5
N
8 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |----------------------------------|----------------------------|-----------------------------|-------------|-----------------------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------| | DA010 | 70 | 10 | N | 300 | N | | <10 | <25 | <10 | <25 | | | DA010 | 70 | 10 | N | 30 0 | . 06 | | | | | | | | DA 0 11
DA 0 11 | 3 00
7 00 | 2 00
2 0 0 | N
N | 15 0
150 | N
N | | <10 | 31 | 110 | <25
 | | | DA012 | 150 | 15 | Ň | 150 | N | | <10 | 3 0 | 40 | <25 | | | DA012 | 300 | 20 | N | 3 00 | .04 | | | | | | | | DA013
DA013 | 100
70 | 10
10 | N
N | 5 0 0
3 00 | .6
.3 | | <10 |
<25 | <10 | <25 | | | DA015 | 150 | 150 | N | 100 | .1 | | <10 | 96 | 56 | <25 | | | DA015 | 200 | 200 | N | 200 | N | | | | | | | | DA016 | 150 | 100 | N | 700 | N | | | | | | | | DA016
DA017 | 70
150 | 70
70 | N
N | 15 0
300 | N
N | | <10
<10 | 110
81 | 25
38 | <25
140 | | | DA017 | 200 | 70 | N | 500 | Ň | | | | | | | | DA020 | 100 | 15 | N | 700 | . 02 | | | | | | | | DA020
DA021 | 70
300 | 20
<10 | N
N | 300
70 | N
N | | <10 | 37
 | 26
 | <25
 | - - | | DA021 | 200 | N | N | 100 | N | | 20 | <25 | <10 | <25 | | | DA022 | 150 | N | N | 30 | .2 | | 80 | <25 | 14 | <25 | | | DA022 | 100 | N | N | 20 | . 06 | | | | | | | | DA024 | 150 | 50 | <200 | 150 | N | | | | | | | | DA024
DA025 | 100
100 | 3 0
5 0 | N
N | 7 0
7 0 | N
. 2 | | <10
<10 | 48
54 | 135
165 | <25
37 | | | DA025 | 100 | 5 0 | <200 `` | 150 | .3 | | | | | | | | DA028 | 15 0 | 7 0 | <200 | 200 | N | | | | | | | | DA028
DA029 | 150
150 | 7 0
7 0 | N
N | 70
100 | N
N | | <10 | 83
 | 190 | 44 | | | DA029 | 70 | 70
50 | N | 50 | N | | <10 | 5 0 | 39 | <25 | | | DA030 | 150 | 5 0 | N | 7 0 | N | | <10 | 98 | 57 | <25 | | | DA030 | 200 | 70 | N | 2 00 | N | | | | | | | | DA031 | 200 | 70 | N | 150 | N | | | | | | | | DA 0 31
D A0 32 | 1 50
5 0 | 7 0
30 | N
N | 70
50 | N
N | | <10
<10 | 95
29 | 53
25 | 35
120 | | | DA032 | 100 | 3 0 | N N | 7 0 | .04 | | | | | | | | DA037 | 100 | 15 | N | 5 0 | N | | <10 | <25 | 34 | <25 | | | DA037
D A0 38 | 150
300 | 15
3 0 | N
N | 50
70 | N
N | | <10 | 42 | 38 |
<25 | | | DA038 | 50 0 | 20 | N | 150 | N | | | | | | | | DA042 | 150 | 3 0 | N | 7 0 | .1 | | <10 | 48 | 37 | <25 | | | DA 042 | 300 | 30 | N | 15 0 | . 2 | | | | | | | | DA043
DA043 | 150
3 00 | 50
70 | N
N | 70
2 00 | .2
N | | <10 | 70
 | 105 | <25
 | | | DA044 | 500 | 50 | N | 15 0 | .04 | | | | | | | | DA044 | 200 | 50 | N | 70 | N | | <10 | 59 | 55 | <25 | | | DA045
DA045 | 150
300 | 150
100 | N
N | 70
150 | N
N | | <10
 | 73
 | 130 | <25
 | | | DA046 | 70 | 20 | Ň | 150 | N | | <10 | <25 | 11 | <25 | | | DA046 | . 70 | 30 | N | 300 | N | | | | | | | | DA047
DA047 | 70
70 | 30
30 | N
N | 500
150 | . 04
N | | <10 | 33 | 12 |
<25 | | | | | | | | | | -10 | | | | | | DA048
DA048 | 70
70 | 5 0
3 0 | N
N | 700
200 | N
N | | <10 | 31 | 12 |
<25 | | | DA048 | 100 | 20 | N | 500 | N | | -10 | | | | | | DA 04 9 | 70 | 15 | N | 150 | N | | <10 | <25 | | | | | DA 0 50
DA 0 50 | 100
70 | 2 0
15 | N
N | 5 00
15 0 | . 06
. 1 | | <10 |
<25 | |
<25 | | | DA050 | 7 0 | 15 | N | 15 0 | .06 | | <10 | <25 | | <25 | | | DA 0 51 | 10 0 | 15 | N | 500 | .1 | | | | | | | | DA052
DA052 | 100
70 | 2 0
15 | N
N | 7 00
15 0 | . 08
N | | 30 | 26 | |
<25 | | | UNUSE | , u | 13 | 11 | 130 | 11 | | 3 U | 20 | 13 | -63 | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|--|--|--|---|--|--|--|--|--| | DA053
DA053
DA054
DA054
DA055
DA055
DA067
DA067
DA068
DA068 | 34 28 42
34 28 42
34 28 42
34 28 42
34 28 42
34 28 42
34 28 31
34 28 31
34 28 31
34 28 31 | 84 1 30
84 1 30
84 1 30
84 1 30
84 1 30
84 1 43
84 1 43
84 1 43
84 1 43 | 2
3
10
3
2
5
1
1.5
15 | .5
.3
.1
.5
.5
.7
.15
.1 | .005
N
N
.005
.007
N
.02
.05 | .2
.3
1
.5
.2
.5
.07
.1 | 1,000
1,000
2,000
1,500
300
700
700
1,000
2,000
1,500 | N
N
N
N
N
N
N |
N
N

N

N | 200
300
100
50
100
150
30
300
100 | N <1 1 N N <1 N <1 N <1 N N <1 N <1 N < | | DA069
DA069
DA070
DA070
DA071
DA071
DA072
DA072
DA073
DA073 | 34 28 31
34 31 | 84 1 43
84 43 | 7
15
15
7
5
7
5
7
2
1.5 | .7
.3
.05
.2
.02
.02
.3
.03
.03 | .005
N
N
.005
.005
N
.005
N
<.05 | .5
1
-1
.7
.3
1
.3
.7
.3
.15 | 2,000
3,000
1,500
200
1,500
1,000
700
700
5,000
3,000 | N
N
N
N
N
N
N |
10
<10

<10

N
<10 | 150
150
70
70
50
70
150
100 | 1
1
1
N
N
<1
<1
<1
<1
<1 | | DA074
DA074
DA075
DA075
DA076
DA076
DA077
DA077
DA078
DA078 | 34 28 31
34 31 | 84 1 43
84 43 | 5
10
3
5
7
3
5
10
2 | .03
.03
.02
<.02
.03
.02
.02
.05
.03 | .005
N
.005
N
N
.007
.005
N | .3
1
.1
.2
.7
.3
.3
.7
.2 | 1,500
1,000
2,000
1,500
500
700
1,000
1,000
300
200 | N
N
N
N
N
N
N | <10
<10
<10
<10

<10

N | 70
50
70
70
50
50
30
30
30 | N <1 | | DA079
DA079
DA080
DA080
DA081
DA081
DA086
DA086
DA086
DA087 | 34 28 31
34 28 31
34 28 31
34 28 31
34 28 31
34 28 31
34 28 20
34 28 20
34 28 20
34 28 20 | 84 1 43
84 1 43
84 1 43
84 1 43
84 1 43
84 1 43
84 2 9
84 2 9
84 2 9
84 2 9 | 10
7
5
10
3
5
3
7
7 | .02
.03
.03
.02
.1
.07
1
1.5 | N
.005
.005
<.05
.007
N
.15
.07
.5 | .7
.3
.5
.3
.5
.3
.5
.3
.2 | 1,000
1,000
2,000
3,000
150
200
300
500
700 | N
N
N
N
N
N
N | <10

<10

N

10
100 | 20
20
70
150
500
700
700
700
500 | N
N
N
<1
N
<1
N
<1
N | | DA088 DA089 DA089 DA089 DA090 DA090 DA093 DA093 DA094 DA094 | 34 28 20
34 28 20
34 28 20
34 28 20
34 28 20
34 28 30
34 28 30
34 28 30
34 28 30 | 84 2 10
84 2 11
84 2 11
84 2 11
84 2 11
84 2 11
84 2 29
84 2 29
84 2 29
84 2 29 | 10
3
3
2
7
3
7
10
5 | .2
.2
.05
.1
.1
.3
.3
.5 | .07
.15
N
.005
.05
.07
.005
N | .3
.15
.07
.3
.15
.15
.15 | 70
70
100
70
300
70
1,000
700
150 | 15
15
N
N
7
2
N
N | 50

300

70

10
10 | >5,000
15,000
1,500
700
3,000
2,000
700
1,500
2,000
2,000 | <1
N
<1
N
<1
N
2
1.5 | | DA095
DA095
DA099
DA099
DA102
DA102
DA110
DA111
DA112
DA113 | 34 28 30
34 28 16
34 28 16
34 27 22
34 27
22
34 27 22
34 22 59
34 24 41
34 23 33
34 25 50 | 84 2 29
84 2 29
84 3 52
84 1 23
84 1 23
84 7 27
84 6 13
84 5 18
84 4 17 | 10
3
10
3
3
10
7
5
5 | 1
.5
.5
.7
1
.5
.05
.3 | .07
.15
N
.005
.005
N
.03
.01 | .3
.3
.7
.3
.3
.1
.5
.3
.2 | 700
500
1,500
700
700
1,000
500
500
150 | N
N
N
N
N
N
N | N

20

50

 | 2,000
1,500
500
300
150
300
500
500
1,000 | 1
1
1.5
1
N
1
1.5
N
1.5
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|--|--|---|---|---|---|---|---|--|--| | DA053
DA053
DA054
DA054
DA055
DA055
DA067
DA067
DA068
DA068 | 70
100
100
70
15
15
30
20
50 | 15
30
50
20
15
30
10
30
300
200 | 30
30
100
100
50
70
30
20
100 | N
N
30
N
N
<20
30
30
N
N | N
N
N
N
N
N
N
N | 10
10
15
<10
<10
20
N
<10
10 | 20
20
30
20
15
20
15
5
70 | 15
30
50
15
10
20
N
10
70
30 | 15
50

20

15
50 | N
N
N
N
30
N
N | | DA069
DA069
DA070
DA070
DA071
DA071
DA072
DA072
DA073
DA073 | 100
100
150
70
30
50
30
700 | 150
150
70
70
30
50
50
50
30 | 200
300
100
100
70
50
70
30
50 | N
N
N
N
N
N | N
N
N
N
N
N
N | N
10
N
<10
10
10
10
10
<10
<10 | 70
100
70
50
30
50
30
30
50
30 | 20
30
50
15
15
30
15
10
30 | 50
50

50

30
15 | N
N
N
N
N
N | | DA074 DA075 DA075 DA076 DA076 DA077 DA077 DA077 DA078 DA078 | 30
50
150
200
50
30
30
20
10 | 70
70
15
70
50
30
50
70
15 | 150
150
50
20
100
150
150
50 | N | N
N
N
N
N
N
N | <10
10
N
<10
10
<10
N
10
10 | 30
50
20
20
50
30
30
50
30 | 15
30
15
10
20
15
15
20
10 | 50

20
30

70

20 | N
N
N
N
N
N | | DA079 DA079 DA080 DA080 DA081 DA081 DA086 DA086 DA086 DA087 | 50
30
300
300
7
10
3
N
15 | 100
70
70
100
30
50
15
10 | 150
200
200
100
70
50
200
250
150 | N
N
N
N
N
N
N | N
N
N
N
N
N | 10
<10
N
10
10
15
<10
10
10 | 100
50
50
70
70
70
5
10 | 500
200
300
700
50
100
150
200
150 | 70

50

30

30
30 | N
N
N
5
N
70
100
100 | | DA088 DA089 DA089 DA090 DA090 DA093 DA093 DA094 DA094 | 20
15
N
N
N
30
30
10 | 10
15
N
7
10
15
30
20
50 | 300
300
30
70
200
150
150
70
50 | N
N
N
N
N
30
20
20 | N
N
N
15
10
N
10
7 | 10
<10
<10
<10
10
<10
<10
10
10 | 15
10
5
N
5
N
30
30
20 | 10,000
1,500
300
150
1,500
700
70
70
50
30 | 30

10

30

15
15 | 100
100
N
15
70
70
7
N
N | | DA095
DA095
DA099
DA099
DA102
DA102
DA110
DA111
DA112
DA113 | 50
30
50
30
30
100
20
5
30 | 70
30
70
50
50
100
70
50
50 | 100
150
30
50
70
50
70
30
70 | 50
30
100
150
N
50
70
N
50 | 10
N
N
N
N
N
N
N | <10 <10 15 10 <10 15 10 15 10 10 10 10 | 30
30
30
30
30
30
30
15
20
N | 50
30
70
30
30
30
30
50
20 | 20

15

30

 | N
15
50
30
5
N
15
10
50 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |-------------------------|--------------------|------------|---|----------------------------|--------------|----------------|--------------|------------------|--------------|--------------|--------------| | DA053 | 70 | 20 | N | 150 | .2 | | <10 | 28 | 14 | <25 | | | DA053 | 70 | 15 | N | 700 | N | | | | | | | | DA054 | 200 | 50 | N | 500 | N | | | | | | | | DA054
DA 0 55 | 150
7 0 | 30
30 | N
N | 150
200 | .3
.2 | | 20
30 | 31
<25 | 25
16 | <25
<25 | | | DA055 | 100 | 70 | N N | 1,000 | .06 | | | | | | | | DA067 | 50 | 10 | N N | 20 | N | | 60 | <25 | 12 | <25 | | | DA067 | 100 | 10 | N | 30 | N | | | | | | | | DA068 | 300 | 50 | N | 200 | N | | | | | | | | DA068 | 300 | 50 | N | 100 | N | | <10 | 61 | 40 | 28 | | | DA069 | 300 | 30 | N | 100 | N | | <10 | 47 | 58 | <25 | | | DA069 | 300 | 30 | N | 200 | N | | | | | | | | DA070
DA070 | 300
30 0 | 15
20 | N
N | 150
100 | N
N | | <10 | 38 | 26 |
<25 | | | DA071 | 150 | 20 | N N | 150 | .09 | | <10 | <25 | 15 | <25 | | | DA071 | 200 | 20 | Ň | 200 | .1 | | | | | | | | DA072 | 150 | 20 | N | 15 0 | N | | <10 | <25 | 25 | <25 | | | DA072 | 150 | 20 | N | 200 | N | | | | | | | | DA073 | 150 | 15 | N | 150 | N | | -10 | 47 | | | | | D A 073 | 70 | 20 | N | 100 | N | | <10 | 47 | 19 | <25 | | | DA074
DA074 | 200
300 | 20
20 | N
N | 70
150 | N
N | | <10 | 33 | 115 | <25
 | | | DA075 | 70 | N | N | 20 | N | | <10 | 42 | 28 | <25 | | | DA075 | 200 | <10 | N | 30 | N | | | | | | | | DA076 | 150 | 50 | N | 300 | N | | -10 | | | -05 | | | DA076
DA077 | 100
200 | 50
15 | N
N | 200
70 | N
N | | <10
<10 | <25
30 | 24
49 | <25
<25 | | | DA077 | 500 | 15 | Ň | 150 | N | | | | | | | | DA078 | 50 | 15 | Ň | 150 | N | | <10 | <25 | 12 | <25 | | | DA078 | 100 | 20 | N | 200 | N | | | | | | | | DA079 | 500 | 10 | N | 100 | N | | | | | | | | DA079 | 200 | N | N | , 70 | N | | <10 | 94 | 57 | 240 | | | DA080 | 200 | N | N | 50 | N | | <10 | 79 | 120 | 400 | | | DA080 | 500 | <10 | N
N | 50
300 | N
N | | <10 |
<25 |
16 | 44 | | | DA081
DA081 | 100
150 | 30
15 | N
N | 300
100 | N | | | | 10 | | | | DA086 | 150 | 15 | 700 | 70 | N | | <10 | <25 | 220 | 34 | | | DA086 | 200 | N | 500 | 70 | . 02 | | | | | | | | D A087 | 150 | 10 | 1,000 | 70 | N | | | | | | | | D A087 | 150 | 10 | 1,500 | 30 | N | | <10 | 240 | 130 | 39 | | | DA088 | 200 | N | 7,000 | 70
50 | .1 | | | 2 000 | | 210 | | | DA088
DA089 | 150
100 | N
N | 3,000
N | 50
2 0 | . 2
N | | <10 | 2,800 | 300 | 210 | | | DA089 | 50 | N | Ň | 20 | Ň | | <10 | 140 | 30 | 110 | | | DA090 | 200 | ,,
N | Ň | 70 | .04 | | | | | | | | DA090 | 150 | N | N | 50 | . 07 | | <10 | 52 | | 310 | | | DA093 | 100 | 30 | N | 70 | N | | <10 | 70 | | 48 | | | DA093 | 150 | 50 | N | 100 | N | | | | | | | | DA094 | 150
150 | 30
30 | N
N | 100
70 | N | | <10 | 63 | 50 |
<25 | | | DA094 | | | | | N | | <10 | | | | | | DA095 | 150 | 50 | N | 150 | N | | -10 | | 120 | | | | DA095 | 150 | 30
70 | N
N | 70
500 | . 2
N | | <10 | 68
 | 130 | <25
 | | | DA099
DA099 | 100
7 0 | 70
70 | N N | 300 | N | | <10 | 190 | | <25 | | | DA102 | 100 | 20 | N N | 300 | .1 | | <10 | 61 | 20 | | | | DA102 | 150 | 50 | N | 3 00 | N | | | | | | | | DA110 | 200 | 30 | N | 150 | < . 02 | . 63 | 60 | 60 | | | | | DA111 | 150
70 | N
50 | N
N | 5 00
1 00 | <.02
<.02 | . 7
. 58 | <10
<10 | 8 0
85 | | <25
<25 | | | DA112
D A 113 | 70
50 | <10 | N
N | 300 | .11 | 2.5 | <10 | | | <25 | | | DALLO | 30 | -10 | • | J 00 | | 2.0 | | - 23 | -10 | | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|---|--|---|--|---|---|---|---
---| | DA114 DA115 DA116 DA117 DA118 DA119 DA120 DA121 DA122 DA123 | 34 25 50
34 25 19
34 25 5
34 25 5
34 25 5
34 25 5
34 25 5
34 29 30
34 29 30
34 29 8
34 26 23 | 84 4 17
84 2 25
84 2 3
84 2 3
84 2 3
84 2 3
84 6 20
84 6 20
84 4 16
84 5 3 | . 2
7
10
5
5
7
3
. 5
3
2 | .05
1
7
.5
1.5
1
.7
.02
1 | .015
.01
5
.02
.015
.2
<.02
<.02
<.02
<.02 | .02
.3
.7
.2
.3
.7
.5
.03
.3 | 70
300
1,500
10,000
1,500
1,000
500
20
1,000
700 | N
N
N
N
N
N
N
N
N |

15
N
20 | 70
700
70
1,000
1,000
1,000
500
70
500
150 | N
1.5
N
1
1.5
1
1.5
<1
1.5 | | DA124
DA125
DA126
DA127
DA128
DA129
DA130
DA131
DA132
DA133 | 34 26 23
34 26 23
34 26 44
34 26 41
34 27 31
34 27 31
34 27 12
34 27 12
34 27 12 | 84 5 2
84 6 22
84 7 16
84 7 16
84 2 53
84 2 53
84 3 11
84 3 11
84 3 11 | .2
3
3
5
.1
1.5
.5
3
<.05 | <.02
.7
1
.5
<.02
.1
<.02
1
.03 | <.02 <.02 <.02 <.02 <.02 <.02 1 N .5 <.02 <.02 | .03
.3
.3
.5
.007
.15
N
.15
.003 | 20
700
1,000
500
20
300
30
1,000
100
700 | N
N
N
N
N
<5
N
N
N | N <10
10
50
N
10
N
30
N | <20
300
700
700
<20
150
N
300
20
30 | <1
1.5
1
N
1
N
2
N | | DA134
DA135
DA136
DA137
DA138
DA139
DA140
DA141
DA142
DA143 | 34 27 12
34 27 12
34 27 12
34 27 12
34 28 20
34 28 22
34 28 22
34 28 40
34 28 40
34 28 38 | 84 3 11
84 3 11
84 3 11
84 3 11
84 3 20
84 3 20
84 3 20
84 3 1
84 3 1
84 3 0 | 2
2
3
1
2
1.5
.2
2
1.5
2 | .5
1
1
.2
1
.3
.02
.7
.2 | <.02
.7
1
.05
.3
<.02
<.02
<.02
<.02
<.02 | .1
.2
.2
.03
.3
.2
.03
.3
.15 | 700
700
1,000
1,500
500
200
30
500
300
700 | N
N
N
N
N
N
S
S
S
S
S | <10
200
200
10
10
<10
N
N
<10
<10 | 300
500
500
100
300
300
500
500
300 | 1
1.5
1.5
N
<1
1.5
N
1
<1 | | DA144
DA145
DA146
DA147
DA148
DA149
DA150
DA151
DA152
DA153 | 34 28 38
34 28 37
34 28 37
34 28 37
34 27 56
34 27 56
34 27 53
34 27 58
34 28 5 | 84 3 0
84 2 59
84 2 59
84 2 59
84 2 0
84 2 0
84 2 0
84 1 55
84 1 54
84 1 50 | 1
2
.5
2
3
1.5
2
5
3 | .2
.7
.07
.7
1.5
.15
.5
2 | <.02
<.02
<.02
<.02
1
.1
.15
2
1.5
<.02 | .1
.2
.03
.2
.5
.1
.3
1 | 500
1,000
300
300
1,000
500
500
1,000
1,000 | <.5
N
<.5
N
<.5
N
N
N | <10
<10
N
<10
<10
N
N
N
10
20
N | 300
300
150
300
200
50
150
N
70 | <1
1
<1
2
N
<1
<1
N
<1
N | | DA154 DA155 DA156 DA157 DA158 DA160 DA161 DA162 DA163 DA164 | 34 28 5
34 28 5
34 28 7
34 28 7
34 28 14
34 28 9
34 28 9
34 28 15
34 28 14
34 28 13 | 84 1 50
84 1 51
84 1 51
84 1 53
84 2 2
84 2 2
84 2 5
84 4 15
84 5 21 | 5
5
2
1
5
3
2
5
2
3 | .7
.15
.5
<.02
.7
2
.3
.7
.3 | .2
.05
.05
N
.1
1.5
.15
.03
.02 | .5
.5
>1
<.002
>1
.5
.15
.2
.3 | 700
500
300
30
1,000
1,000
700
5,000
500
1,000 | N
N
N
N
N
N
N
N | 50
10
N
N
10
30
20
<10
<10
20 | 70
20
300
N
150
30
N
300
300 | <1
<1
N
<1
N
N
1
1.5 | | DA165 DA166 DA167 DA168 DA169 DA170 DA171 DA172 DA173 DA174 | 34 28 13
34 25 53
34 25 53
34 25 23
34 25 23
34 24 59
34 24 43
34 24 43
34 24 24 | 84 5 21
84 5 58
84 5 58
84 5 13
84 5 13
84 5 1
84 5 1
84 4 49
84 4 49
84 4 31 | 1
2
.15
3
.5
2
.15
3
.7 | .05
.07
<.02
.7
.05
.7
.03
.2
<.02 | .02 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 | .07
.5
.02
.5
.05
.3
.01
.5
.03 | 200
200
20
500
500
500
100
700
500 | N
N
N
N
N
N
N | <10
<10
N
15
N
<10
N
50
N | 100
100
N
300
N
300
N
300
N | <1
<1
N
1
N
1
N
1
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|---|--|--|---|---------------------------------------|--|---|--|--|---| | DA114 DA115 DA116 DA117 DA118 DA119 DA120 DA121 DA122 DA123 | <3
7
15
10
15
10
10
N
20 | 1
30
200
20
70
70
70
<5
50 | 5
70
100
150
100
100
30
<2
30
3 | N
30
N
30
50
50
N
N
70 | N
N
N
N
N
N
N
N | N N N N N N N N N N N N N N N N N N N | N
20
100
20
50
50
7
5
10 | N
15
N
20
30
15
15
15
N
15 |

N
10
10
N | N
15
100
15
15
30
N
N
N | | DA124
DA125
DA126
DA127
DA128
DA129
DA130
DA131
DA132
DA133 | 5
7
20
10
<5
20
5
70
15
30 | <5
<5
30
50
N
10
<5
5
<5 | <2
3
<2
20
<2
50
2
30
<2
<2 | N
20
50
N
N
N
N
N
70
N | N
N
N
N
N
N
N
N | <10
20
10
15
<10
N
N
N
N | 5
N
70
7
<5
10
N
20
<5
5 | <10
70
15
20
N
30
<10
20 | 15
10
7
15
N
20
N
20
N | N
N
N
N
N
N
N
N | | DA134
DA135
DA136
DA137
DA138
DA139
DA140
DA141
DA142
DA143 | 30
50
30
10
15
5
N
7
7 | 10
10
7
<5
70
<5
<5
<5 | 30
30
100
30
20
2
<2
15
7 | N
N
N
N
30
N
70
N | N N N N N N N N N N N N N N N N N N N | N
N
N
10
30
<10
20
10 | 10
10
20
5
20
5
N
5
N | 15
15
20
N
10
20
N
200
50 | 10
20
20
5
10
15
N
15
7 | N
100
50
N
<50
N
N
N | | DA144 DA145 DA146 DA147 DA148 DA149 DA150 DA151 DA152 DA153 | 5
15
5
10
30
10
15
30
50 | <5
<5
<5
150
10
30
150
150 | 5
2
<2
20
50
10
30
50
100 | 70
100 ,
N
70 ,
N
N
30 ,
N | 7
N
N
<5
N
N
N
N | 10
15
<10
10
10
<10
10
<10
10
<10 | <5
<5
<5
<5
100
7
7
70
100 | 100
30
<10
15
10
<10
<10
<10
<10 | 7
10
N
10
30
7
10
20
30
7 | N
N
N
150
N
100
100 | | DA154
DA155
DA156
DA157
DA158
DA160
DA161
DA162
DA163
DA164 | 50
50
15
10
50
30
20
15
15 | 100
30
15
<5
50
200
30
30
50 | 50
50
30
30
150
150
100
150
30 | N
N
N
N
N
N
N
N | N
N
N
N
N
N | <10
<10
15
N
<10
<10
<10
<10
10 | 100
30
5
5
70
100
20
70
20 | N <10
10
N 30
10
N 50
15 | 30
20
10
N
30
30
7
7
7
10
20 | N
N
N
N
100
N
N
N | | DA165 DA166 DA167 DA168 DA169 DA170 DA171 DA172 DA173 DA174 | 10
5
N
20
15
15
5
15
20 | 5
<10
N
30
N
<10
N
70
N | <5
<5
<5
30
7
<5
<5
<5
20 | N
N
N
N
100
N
N
N | N
N
N
N
N
N
N
N | <10
10
N
10
N
10
N
10<
<10 | 5
7
N
20
7
5
<5
20
5 | N
15
N
15
N
15
N
20
N | 5
7
N
15
N
15
N
30
N | N
N
N
N
N
N
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |--|--|--|--|---|--|---|---|---|---|--|---| |
DA114
DA115
DA116
DA117
DA118
DA119
DA120
DA121
DA122
DA123 | N
70
200
70
100
150
70
<10
50 | N
15
30
30
50
70
20
N
50
30 | N
N
N
N
N
<200
N
<200 | N
150
30
50
150
150
150
50
100 | .1
.07
.1
.09
.07
<.02
N
N | . 4
. 44
. 29
. 63
. 65
. 44 | <10
<10
<10
20
<10
<10
 | <25
<25
35
70
130
95
100
6
42
28 | 10
<10
20
40
35
50
42
<5
55 | <25 <25 <25 <25 <25 <25 <25 <14 <5 14 120 |

3
4
2
4 | | DA124 DA125 DA126 DA127 DA128 DA129 DA130 DA131 DA132 DA133 | <10 10 50 100 <10 150 <10 100 20 | N
50
20
10
N
N
N
N
N | N
<200
<200
N
N
200
N
<200 | 50
500
150
200
N
50
N
70 | N
N
N
N
N
N
N
N | |

 | 5
36
82
20
<5
61
23
130
<5
8 | <5
7
5
16
<5
110
12
36
<5
5 | 12
40
12
20
<5
44
20
26
<5 | <2
3
2
2
2
3
4
3
3
3 | | DA134
DA135
DA136
DA137
DA138
DA139
DA140
DA141
DA142
DA143 | 100
150
100
30
70
10
N
<10
<10 | <10
15
15
N
20
50
30
50
20 | <200
<200
<200
N
N
S
<200
N
<200
<200 | 50
70
70
N
200
500
70
500
200 | N
N
N
N
N
N
2.3
.7
.02 | |

 | 59
95
67
11
46
12
<5
140
58
140 | 58
54
110
47
20
<5
<5
17
15 | 20
16
20
<5
5
16
<5
130
40
32 | 3
8
4
4
4
6
6
6 | | DA144
DA145
DA146
DA147
DA148
DA149
DA150
DA151
DA152
DA153 | <10
30
10
30
150
30
50
150
200
50 | 50
30
<10
30
20
<10
20
30
15 | N
N
N
<200
<200
N
N
<200
<200 | 200
300
70
300
70
70
200
100
100
<10 | . 08
N
N
N
. 4
. 4
N
N
N | | | 150
57
17
87
82
16
28
50
64 | 13
10
9
26
77
22
38
95
96
10 | 96
20
8
14
8
<5
<5
<5 | 8
3
4
4
3
4
4
3
4 | | DA154 DA155 DA156 DA157 DA158 DA160 DA161 DA162 DA163 DA164 | 300
300
30
<10
200
300
100
100 | 15
10
15
N
20
15
<10
10
20 | <200
<200
N
N
500
<200
N
N
N | 70
100
200
N
70
70
10
50
150 | N N N N N N N N N N N N N N N N N N N | | | 69
60
40
<5
530
50
17
43
16
32 | 69
79
27
64
170
150
110
28
20 | 12
16
<5
<5
36
8
6
48
8 | 2
3
4
4
2
3
4
4
4
4 | | DA165
DA166
DA167
DA168
DA169
DA170
DA171
OA172
DA173
DA174 | 15
50
<10
100
10
50
<10
200
10 | <10
N
N
15
N
50
N
10
N | N
N
N
< 200
N
N
N
N
N | 70
300
N
150
<10
300
N
150
N | N N N N N N N N N N N N N N N N N N N |

 |

 | 9
<5
<5
86
5
25
<5
30
7 | 8
<5
<5
65
10
<5
<5
7
14 | 20
< 5 | 4
4
4
4
4
8
2
3
3 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|---|--|--|--|---|--|---|--|---|--| | DA175
DA176
DA177
DA178
DA179
DA180
DA181
DA182
DA183
DA184 | 34 24 12
34 24 12
34 24 12
34 23 55
34 23 55
34 23 45
34 23 45
34 23 45
34 27 0 | 84 4 9
84 4 9
84 4 9
84 3 51
84 3 51
84 3 37
84 3 37
84 3 37
84 0 53
84 0 53 | 3
1.5
3
3
3
3
1
.7
3 | .7
.1
.7
1
1
.07
.07 | <.05
.15
<.05
<.05
<.05
<.05
<.05
<.05
<.05
<.0 | .3
.15
.2
.3
.2
.3
.05
.07 | 700
700
500
500
3,000
1,000
500
500
700
200 | N
N
N
N
N
N
N | 50
<10
30
50
50
10
N
10 | 300
300
500
300
300
500
300
150
300
70 | 2 <1 1 1.5 1 1.5 1 <1 <1 <1 | | DA186
DA187
DA188
DA189
DA190
DA191
DA192
DA193
DA194
DA195 | 34 28 42
34 28 36
34 28 36
34 28 36
34 28 32
34 28 40
34 28 40
34 28 40
34 28 32 | 84 2 5
84 2 5
84 2 5
84 2 9
84 2 0
84 1 58
84 1 59
84 2 0
84 2 7 | 7
10
.3
7
10
15
5
5
15 | 1.5
1.5
.1
2
.7
.07
.7
.3
.15 | .7
.15
.7
<.02
.07
.15
.15
<.02
<.02 | 1
>1
.03
>1
.3
.7
.3
.2
.2 | 1,000
5,000
150
1,000
70
1,500
300
70
50 | N
N
N
N
N
N
N
N | <10
15
N
15
15
15
10
20
10
30 | 300
500
<20
700
1,000
150
150
1,500
500 | <1
1
N
1
N
<1
1
1
N
N | | DA196 DA197 DA198 DA199 DA200 DA201 DA202 DA203 DA204 DA205 | 34 28 31
34 28 32
34 28 36
34 28 22
34 22 | 84 2 4
84 2 2
84 2 11
84 2 11
84 2 11
84 2 11
84 2 11
84 2 11
84 2 11 | 15
10
7
5
20
5
7
7
7 | .3
.07
1.5
.07
1.5
2
1 | .15
.3
.2
3
.05
.1
1
.3
.3 | .3
.3
.5
.7
.07
.3
.7
.3
.3 | 100
300
100
500
300
150
1,000
700
1,000
300 | N
N
N
<.5
<.5
3
<.5
2
1.5 | 50
10
20
150
30
30
20
10
10 | 700
150
300
1,000
100
>5,000
700
>5,000
>5,000
1,500 | N <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | | DA206 DA207 DA208 DA209 DA210 DA211 DA212 DA213 DA214 DA215 | 34 28 22
34 22 | 84 2 10
84 10 | 7
7
5
10
7
7
7
7
7 | 3
3
2
1.5
2
1.5
2
2
1.5
1.5 | .5
.3
.7
2
3
.3
.7
.5 | .3
.3
.15
.2
.15
.3
.5 | 5,000
5,000
5,000
3,000
3,000
3,000
1,500
2,000
2,000
700 | 1.5
1
1.5
.5
<.5
<.5
<.5
<.5 | 700
100
10
<10
150
<10
10
10
<10 | 1,500
700
500
150
100
150
300
500
700
1,500 | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | | DA216 DA217 DA218 DA219 DA220 DA221 DA222 DA222 DA223 DA224 DA225 | 34 28 22
34 26
34 28 26
34 28 26 | 84 2 9
84 2 9
84 2 9
84 2 9
84 2 9
84 2 9
84 2 3
84 2 34
84 2 34 | 7
7
7
7
7
5
7
10
.3 | 1.5
1
1.5
2
2
3
1.5
.07
<.02 | .07
.07
.3
.3
.1
3
.7
<.02
<.02
<.02 | .3
.3
.3
.3
.3
.2
.5 | 300
200
1,500
2,000
1,500
1,000
150
>5,000
5,000 | .7
<.5
<.5
<.5
2
N
<.5
N | <10
<10
10
15
10
<10
50
70
<10 | 1,500
1,500
700
150
150
150
200
300
<20 | <1
<1
<1
<1
<1 | | DA226 DA227 DA228 DA229 DA230 DA231 DA232 DA233 DA234 DA240 | 34 28 26
34 22 | 84 2 34
84 2 34
84 2 34
84 2 35
84 2 35
84 2 35
84 2 35
84 2 35
84 2 35
84 2 35 | 5
.3
7
.7
7
5
.15
5 | .03 <.02 .7 .02 .3 .07 <.02 .07 <.02 | <.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02 | .5
.07
1
.07
1
.03
1
.015 | 300
30
150
20
300
700
200
700
200
50 | N
N
N
N
N
N
N | 10
<10
10
<10
<10
<10
N
10
N | 700
150
700
150
1,500
200
<20
300
<20
700 | N
N
1
N
1
<1
N
<1
N
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu- ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|--|---|--|---|--|--|--|---|---|--| | DA175
DA176
DA177
DA178
DA179
DA180
DA181
DA182
DA183
DA184 | 30
15
30
20
20
20
30
30
20 | 30
N
30
70
150
70
N
N
50 |
20
10
30
30
50
30
10
7
30
<5 | 100
30
N
50
N
100
20
<20
100
N | N
N
N
N
N
N
N | 10 <10 10 10 <10 10 <10 10 <10 <10 <10 < | 10
7
10
20
100
70
15
7
50 | 20
<10
100
20
10
20
50
<10 | 30
5
20
30
50
30
7
<5
30
5 | 100
N
N
N
N
N
N
N | | DA186 DA187 DA188 DA189 DA190 DA191 DA192 DA193 DA194 DA195 | 15
50
N
15
N
20
N
N | 70
70
<5
70
20
10
<5
5
30 | 30
70
7
70
700
300
70
70
100
70 | 20
50
<20
<20
<20
<20
<20
<20
20
20 | <5
7
N
<5
7
7
<5
<5 | 10
15
<10
15
10
10
<10
10
10 | 30
70
N
30
<5
10
<5
<5
<5 | 15
15
N
20
70
30
30
30
20 | 20
20
<5
20
30
30
15
15 | 100
<50
N
100
70
50
70
70
<50
<50 | | DA196 DA197 DA198 DA199 DA200 DA201 DA202 DA203 DA204 DA205 | N <5 5 5 10 5 10 15 20 15 10 | 30
7
10
30
5
30
70
15
15 | 70
150
70
100
300
300
70
300
300
300
2,000 | <20
<20
<20
20
<20
<20
<20
30
<20
<20
<20 | 7
5
<5
7
20
<5
<5
5
7 | 10
10
10
10
<10
10
10
10 | 7
10
10
50
15
15
50
15
10 | 50
15
30
30
300
1,500
30
1,500
1,500
700 | 30
20
30
20
10
30
15
30
30 | N
50
100
70
N
70
100
70
70
<50 | | DA206 DA207 DA208 DA209 DA210 DA211 DA212 DA213 DA214 DA215 | 15
15
15
20
15
15
15
15 | 30
15
7
20
50
70
30
20
50
20 | 200
500
300
700
200
300
300
500
500 | <20
<20
<20
<20
<20
<20
<20
<20
<20
<20 | 5
<5
<7
5
<5
<5
<5
<5 | 10
10
10
10
10
<10
<10
<10
<10 | 15
15
10
15
15
15
10
10
10 | 1,000
1,500
300
30
70
300
70
70
50
1,500 | 20
20
15
15
20
20
20
20
20 | 50
<50
<50
<50
100
100
70
50
<50 | | DA216 DA217 DA218 DA219 DA220 DA221 DA222 DA223 DA224 DA225 | 15
15
15
15
15
20
20
20
20 | 15
15
15
30
50
30
50
15
<5 | 300
200
300
500
200
200
150
7
<5 | <20
<20
<20
<20
<20
<20
<20
<20
<20
<20 | <5
<5
<5
<5
<5
<5
<5
<5
<5 | <10
<10
<10
<10
<10
<10
<10
<10
<10 | 15
15
15
15
15
15
20
20
N | 700
70
70
70
1,500
30
15
30
N | 15
15
20
20
20
20
5
5
20 | <50
N
N
N
N
<50
70
N
N | | DA226 DA227 DA228 DA229 DA230 DA231 DA232 DA233 DA234 DA240 | 7
N
5
N
10
10
15
10
< 5 | 50
<5
70
<5
50
100
<5
50
<5 | 15
5
150
7
150
30
5
15
5 | <20
<20
20
<20
30
20
<20
<20
<20
N | 10
N
5
N
10
<5
N
<5 | <10
<10
10
<10
10
10
<10
10
<10
N | 20
N
30
N
30
20
N
30
N | 30
N
100
N
100
50
N
15
N | 20
5
20
<5
20
15
N
15
N | N
N
N
N
N
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |----------------|--------------------|-------------------|--------------------|---------------------------|--------------|----------------|--------------|--------------|-----------------|--------------------|---------------| | DA175 | 50 | 50 | <200 | 150 | N | | | 70 | 35 | 6 | 4 | | DA176 | 20 | <10 | N | 100 | N | | | 16 | 10 | 6 | 3 | | DA177 | 50 | 15 | <200 | 100 | N | | | 98 | 38 | 40 | 4 | | DA178 | 70 | 20 | <200 | 20 0 | N | | | 54 | 29 | 8 | 4 | | DA179 | 200 | 15 | <200 | 70 | N | | | 61 | 100 | 12 | 3 | | DA180 | 100 | 50 | <200 | 300 | N | | | 76 | 20 | 16 | 3 | | DA181 | 10 | 15 | N | 5 0 | Ņ | | | 6 | 7 | 20 | 4 | | DA182 | 15 | 10 | N | 70 | N | | | 10 | 5 | 6 | 3 | | DA183 | 100 | 70 | <200 | 150 | N | | | 150 | 37 | 14 | 4 | | DA184 | 20 | 10 | N | 50 | N | | | 19 | 6 | 6 | 2 | | DA186 | 150 | 20 | <200 | 200 | N | | | 54 | 35 | <25 | N | | DA187 | 150 | 30 | 200 | 300 | N | | | 140
<25 | 51
<10 | <25
<2 5 | <4
N | | DA188 | 10 | N
20 | <200
<200 | <10 | . 2
N | | | 100 | 50 | <25 | Ň | | DA189
DA190 | 150
150 | 30
N | ~200
N | 150
50 | .04 | | | <25 | 360 | 25 | <4 | | DA190
DA191 | 300 | <10 | N | 5 0 | . U T | | | <25 | 120 | 28 | <4 | | DA191
DA192 | 70 | <10 | <200 ^{''} | 100 | .02 | | | <25 | 31 | <25 | N | | DA192 | 100 | N | - 200
N | 100 | N N | | | 26 | 53 | <25 | Ň | | DA193 | 150 | <10 | <200 | 50 | N | | | <25 | 88 | <25 | <4 | | DA195 | 100 | 10 | 200 | 200 | Ň | | | 34 | 56 | 28 | <4 | | DA196 | 150 | <10 | <200 | 70 | N | | | 28 | 65 | 25 | <4 | | DA197 | 200 | N | <200 | 70 | N | | | <25 | 90 | <25 | <4 | | DA198 | 300 | <10 | <200 | 50 | N | | | <25 | 31 | <25 | <4 | | DA199 | 200 | 20 | 300 | 70 | N | | | 260 | 95 | 48 | 4 | | DA200 | 30 | 15 | 700 | <10 | N | | | 1,200
800 | 160
260 | 60
930 | 4
6 | | DA201 | 150 | N | 700 | 30
150 | N
N | | | 100 | 54 | <25 | N | | DA202 | 150 | 20
<10 | <200
1,000 | 15 0
5 0 | N | | | 1,400 | 210 | 810 | 4 | | DA203 | 150
150 | <10 | 1,500 | 50
50 | N | | | 2,200 | 220 | 580 | <4 | | DA204
DA205 | 100 | <10 | 3,000 | 50 | . 2 | | | 3,200 | 2,500 | 340 | <4 | | DA206 | 150 | <10 | 1,500 | 70 | . 02 | | | 1,800 | 140 | 610 | <4 | | DA207 | 150 | 10 | 2,000 | , 70 | N | | | 1,800 | 120 | 680 | <4 | | DA208 | 100 | <10 | 3,000 | 50 | N | | | 1,900 | 130 | 360 | <4 | | DA209 | 100 | 10 | 3,000 | 30 | .1 | | | 2,200 | 260 | 28 | <4 | | DA210 | 100 | 10 | 1,500 | 50 | N | | | 120 | 120 | 28 | <4 | | DA211 | 100 | 10 | 2,000 | 30 | N | | | 1,000 | 150 | 410 | <4 | | DA212 | 100 | 10 | 5,000 | 50 | N | | | 400
170 | 160
270 | <25
36 | <4
<4 | | DA213 | 150 | <10 | 700
<200 | 70
70 | N
. 02 | | | 120 | 270 | 32 | <4 | | DA214 | 100 | <10 | | 70
50 | . UZ
N | | | 2.400 | 220 | 910 | <4 | | DA215 | 100 | <10 | 3,000 | | | | | • | | | | | DA216 | 100 | <10 | 3,000 | 70 | .02 | | | 3,000 | 140 | 780 | <4 | | DA217 | 100 | <10 | 1,000 | 50 | N | | | 1,200 | 90 | 60 | <4 | | DA218 | 100 | <10 | 1,000 | 50 | .02 | | | 960
240 | 170
160 | 44
80 | <4
<4 | | DA219 | 100 | <10 | 700 | 50
70 | N
N | | | 140 | 72 | 680 | <4 | | DA220 | 100 | <10 | 300
3 00 | 70
50 | N
N | | | 140 | 70 | 25 | <4 | | DA221
DA222 | 100
1 00 | 10
<10 | <200 | 50
50 | N | | | 28 | 58 | <25 | <4 | | DA223 | 70 | <10 | 1200
N | 100 | Ñ | | | <25 | <10 | | 6 | | DA224 | <10 | N | Ň | <10 | Ň | | | <25 | <10 | | Ň | | DA225 | 70 | <10 ^{''} | Ň | 70 | | | | | | | <4 | | DA226 | 100 | <10 | N | 100 | N | | | <25 | 35 | | 20 | | DA227 | 30 | N | N | <10 | N | | | <25 | 13 | | N | | DA228 | 200 | 15 | <200 | 100 | N | | | <25 | 120 | | 4 | | DA229 | 30 | . N | . 200 | <10 | N | | | <25 | 25 | | <4 | | DA230 | 150 | 15 | <200 | 100 | .06
.08 | | | 52
<25 | 90
29 | | 8
N | | DA231 | 150 | 15
N | N
N | 300
<10 | .08
N | | | <25
<25 | | | N
N | | DA232
DA233 | <10
100 | N
10 | N
N | 300 | .2 | | | <25 | <10 | | N | | DA233 | <10 | N N | N N | <10 | .04 | | | <25 | | | <4 | | DA234 | 150 | N N | N | 30 | .04 | | 20 | 35 | | | Ň | | UNLTU | 100 | " | ., | | | | | | | | •• | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|---|---|--|---|--|--|--|---|--|---| | DA241
DA242
DA243
DAB01
DAB01
DAB02
DAB02
DAB03
DAB03
DAB03 | 34 28 22
34 28 22
34 28 22
34 30 7
34 30 7
34 30 7
34 30 7
34 30 7
34 30 7
34 30 7 | 84 2 11
84 2 11
84 2 11
84 0 55
84 0 55
84 0 55
84 0 55
84 0 55
84 0 55
84 0 55 | 5
5
3
7
5
2
3
3
5 | .2
1.5
.2
.1
.07
.1
.1
.015
<.05
.2 | .2
.1
N
.005
N
N
.005
.005 | .15
.15
.3
.7
.5
.3
.2
.3
.5 | 70
1,000
70
1,500
700
500
700
1,500
1,000
200 | N
N
1.5
N
N
N
N
N | 10
N
30

N
N

N
<10 | 700
300
3,000
15
30
150
50
15
70 | <1
1
N
N
<1
<1
N
N
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1 | | DAB04 DAB05 DAB05 DAB06 DAB06 DAB08 DAB08 DAB08 DAB09 DAB09 DAB10 | 34 30 7
34 30 5
34 30 5
34 30
3
34 30 3
34 29 58
34 29 58
34 29 51
34 29 51
34 29 51 | 84 | 2
2
1.5
2
1.5
2
1.5
7 | .2
.7
.7
.5
1
.5
.7
.7 | .005
.2
.2
.3
.2
.15
.2
.03
<.05
N | .3
.2
.3
.2
.3
.3
.3 | 300
500
700
500
700
500
700
1,500
1,500 | N
N
N
N
N
N
N
N |
N
<10
<10
<10 15 | 700
300
300
500
500
700
700
100
200
700 | N
1.5
2
2
2
2
2
2
2
1
<1 | | DAB10 DAB11 DAB11 DAB12 DAB12 DAB12 DAB13 DAB13 DAB14 DAB14 DAB15 | 34 29 51
34 29 51
34 29 51
34 29 51
34 29 51
34 29 52
34 29 52
34 29 52
34 29 52
34 29 52 | 84 1 0
84 1 0
84 1 0
84 1 0
84 1 1
84 1 1
84 1 1
84 1 1
84 1 1 | 2
3
3
2
1.5
1.5
2
2
1.5 | .7
.7
.5
.7
.7
.5
.7 | .005
.005
N
.1
.15
.3
.2
.1 | .2
.3
.3
.2
.3
.3
.3 | 1,500
700
500
700
700
700
500
500
700
500 | N
N
N
N
N
N
N | <10
10

<10
10

<10 | 500
500
500
500
500
500
500
700
500
300 | N
1
2
1.5
2
2
1.5
1.5
2
<1 | | DAB15 DAB16 DAB16 DAB17 DAB17 DAB18 DAB18 DAB18 DAB19 DAB19 DAB20 | 34 29 52
34 29 52
34 29 52
34 29 52
34 29 52
34 29 51
34 29 50
34 29 50
34 29 50 | 84 1 1
84 1 1
84 1 1
84 1 1
84 1 4
84 1 4
84 1 5
84 1 5 | 1.5
1.5
2
1.5
2
2
1.5
1.5
1.5 | .7 1 .5 1 .5 .7 .7 .7 1 .1 | 2
.3
.2
2
1.5
.1
.2
.005
N | .2
.3
.2
.3
.2
.2
.15
.2
.3 | 700
500
200
700
500
500
700
700
700 | N
N
N
N
N
N
N |
10

<10
<10

<10
<10 | 700
700
500
500
300
200
300
500
500 | 2
2
1.5
1
1
1.5
1
N
1.5
<1 | | DAB20
DAB21
DAB21
DAB22
DAB22
DAB23
DAB23
DIL1
DIL2
DIL3 | 34 29 50
34 29 51
34 29 51
34 29 48
34 29 46
34 29 46
34 56 5
34 56 5
34 56 5 | 84 1 5
84 1 4
84 0 56
84 0 56
84 0 55
84 0 55
84 0 55
83 29 40
83 29 40
83 29 40 | 7
3
1.5
1.5
2
2
1.5
.7
15 | .5
.7
1
.7
.2
.2
.5
.02
.03 | .005
.05
.1
.007
<.05
<.05
.005
<.05 | 1
.3
.2
.2
.3
.2
.2
.005
1 | 1,500
700
1,000
1,000
700
700
1,000
30
>5,000
1,500 | N
N
N
N
N
N
2 | <10

<10
15

N
10
10 | 70
700
500
700
700
500
300
50
70 | N
1.5
N
1
1
1
N
N
N | | DIL4 DIL5 DIL6 DU01 DU02 DU03 DU04 DU05 DU06 DU07 | 34 56 5
34 56 5
34 56 2
34 6 32
34 6 37
34 5 46
34 5 46
34 5 46
34 5 24
34 4 51 | 83 29 40
83 29 40
83 29 45
84 11 30
84 11 30
84 10 58
84 10 58
84 10 6
84 9 43 | 7
.15
7
.15
7
1.5
7
.7 | 1.5
.02
1.5
.01
.15
.02
.03
.015
.7 | <.05
<.05
7
<.005
.03
.005
.007
<.005
.05 | 1
.03
.7
.03
.5
.3
.5
.15 | 2,000
150
1,500
7
200
30
20
10
200
150 | N
N
N
N
N
N | <10
N
<10

 | 300
300
700
100
700
500
700
300
1,000 | 1.5
N
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu- ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|--|---|---|--|--------------------------------------|--|--|---|--|---| | DA241
DA242
DA243
DAB01
DAB01
DAB02
DAB02
DAB03
DAB03
DAB04 | <5
20
N
30
20
15
30
30
100
20 | 30
70
20
70
70
30
30
70
100 | 100
200
70
150
150
30
50
70
70 | N
N
N
N
<20
<20
N
N
<20
<20 | N
N
N
N
N
N
N | N
N
N
N
15
10
10 | <5
15
30
30
30
30
50
50
50 | 50
70
200
15
20
30
20
20
30
50 | 20
20
20

50
15

50
20 | N
N
N
<50
<50
N
N
<50
<50 | | DAB04 DAB05 DAB05 DAB06 DAB06 DAB08 DAB08 DAB09 DAB09 DAB10 | 15
10
7
10
7
10
7
30
100
20 | 15
10
7
<5
7
<5
7
70
100
<5 | 50
30
7
50
30
20
15
200
300
20 | N
50
50
50
70
50
70
150
300 | N
N
N
N
N
N
N
N | 10
15
10
15
10
15
10
N
10
15 | 20
<5
7
<5
3
<5
3
50
70 | 30
30
30
30
20
20
20
20
20
20 | 15

20

20

70
20 | N
100
70
150
100
70
70
N
<50 | | DAB10 DAB11 DAB11 DAB12 DAB12 DAB13 DAB13 DAB13 DAB14 DAB14 DAB15 | 30
30
20
15
15
20
15
10
7 | 10
10
<5
<5
7
<5
<5
<7
<5 | 20
30
30
20
10
15
50
50
15 | 50
50
70
70
70
70
70
50
70 | N
N
N
N
N
N
N | 10
10
15
10
10
10
15
15
15 | 15
30
30
<5
5
7
<5
<5
7 | 20
20
30
50
30
20
30
30
30 | 15
10

15
15
15 | 10
7
<50
100
70
100
100
100
100 | | DAB15 DAB16 DAB17 DAB17 DAB18 DAB18 DAB18 DAB19 DAB19 DAB20 | 7
7
5
7
10
10
5
10
15 | 7
10
<5
7
<5
<5
5
7
10
70 | 20
30
10
5
10
10
10
15
15 | 70
50
20
70
30
30
70
150
50 | 5
N
N
N
N
N
N
N | 10
15
<10
10
<10
<10
10
10
15 | 7
3
<5
5
<5
<5
5
20
30
20 | 30
30
15
15
20
20
15
30 | 15
15
10

20 | 150
100
70
150
150
100
150
70
<50 | | DAB20 DAB21 DAB21 DAB22 DAB22 DAB23 DAB23 DIL1 DIL2 DIL3 | 100
15
15

100
20

N
30
20 | 70
15
10
30
50
20
15
5
150
300 | 70
30
7
70
70
20
20
500
300 | 50
50
70
N
N
N
30
<20
<20 | N
N
N
N
N
N
N
N | 10
10
10
10
10
10
10
<10
<10
30 | 30
15
5
30
30
10
7
<5
15 | 20
50
30
30
70
200
100
N
70
30 | 20

30
20

N
70 | 30
70
70
30
50
50
70
<100
500
<100 | | DIL4 DIL5 DIL6 DU01 DU02 DU03 DU04 DU05 DU06 DU07 | 30
N
10
N
10
N
N
15 | 70
<5
150
2
100
30
70
5
100 | 150
10
30
<1
150
15
50
<1
70 | 30
<20
<20
N
50
N
<30
<30
N | N
N
N
N
N
N
N | 15 <10 10 <10 10 20 15 10 15 10 | 30
N
20
N
15
3
5
30
N | 30
N
15
N
70
15
15
20 | 30
N
15

 | <100
<100
700
N
20
15
50
N
20 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |--|---|---|--|--|---|-------------------------------------|---|--|---|--|---------------------------------------| | DA241
DA242
DA243
DAB01
DAB01
DAB02
DAB02
DAB03
DAB03
DAB04 | 150
150
200
200
200
70
50
100
200 | N
N
N
15
10
15
20
30
30 | N
700
N
N
N
N
N
N | 50
30
50
100
70
300
200
150
200
300 | .06
.04
.06
N
.02
N
N
N | | 40
40
120
<10

<10
<10 | <25
50
70
53

<25
31
 | 150
230
130
50

<10
27
 | 30
90
220
<25

<25
<25
 | N
N

 | | DAB04 DAB05 DAB05 DAB06 DAB06 DAB08 DAB08 DAB08 DAB09 DAB09 DAB10 | 70
70
30
100
70
70
70
150
300 | 15
50
30
70
50
50
50
150
>200 | N N N N N N N N N N N N N N N N N N N | 200
200
200
200
300
150
300
70
150
300 | N
.8
.02
.4
.02
.02
N
N
.02 | | <10

<10

<10

<10
<10 | <25

38

35

29
67
 | 10

<10

13

<10
52
 | 25

<25

<25

<25
<25 |

 | | DAB10
DAB11
DAB11
DAB12
DAB12
DAB13
DAB13
DAB14
DAB14
DAB14 | 70
70
70
70
30
70
70
70
70 |
70
70
50
100
70
100
100
50
50 | N
N
N
N
N
N
N | 300
300
1,000
500
300
200
700
300
150 | .2
N
N
N
N
.1
.2
1.3 | | <10
<10

<10
<10

<10 | <25
65

35
36

30 | <10
12

<10
<10

<10 | <25
<25

<25
<25

<25 | | | DAB15 DAB16 DAB16 DAB17 DAB17 DAB18 DAB18 DAB18 DAB19 DAB19 DAB19 | 70
70
30
70
30
30
30
70
50 | 30
20
30
30
30
30
30
30
50 | N
N
N
N
N
N
N
N
N | 300
300
150
200
300
150
200
200
500
150 | .6
.2
.5
N
.06
.04
N
.09
.06 |

 | <10
<10

<10

<10
<10 | <25
<25

61

33
32
 | 14
13

<10

<10
<10 | <25
<25

<25

<25
<25
 | | | DAB20 DAB21 DAB21 DAB22 DAB22 DAB23 DAB23 DAB23 DIL1 DIL2 DIL3 | 150
100
70
70
100
70
70
10
700 | 15
70
30
15
20
15
15
15
50 | N
N
N
N
N
N
N | 100
500
300
300
700
300
300
N
70 | N
.02
N
N
.04
.2
1.5
.02 | | <10

<10
<10

20
 | 31

39
<25

<25
<5
49 | 20

<10
17

11
600
200
22 | 14 |

<2
<2
2 | | DIL4
DIL5
DIL6
DU01
DU02
DU03
DU04
DU05
DU06
DU07 | 200
10
150
7
300
50
150
15
200 | 30
<10
30
N
30
<10
<10
N
50 | <200
N
N
N
N
N
N
N
N | 500
N
500
150
150
500
700
300
300
70 | N
.02
N
<.02
<.02
<.02
<.02
<.02
<.02
<.02 |
.53
.75
.53
.69
1.2 |

<10
<10
<10
<10
<10
<10
<10 | 60
<55
52
<25
90
<25
25
<25
130
<25 | <10
80
14
25
11
50 | <5
<25
<25
<25
<25
<25
<25 | <2
<2
2
 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct. | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | В-р рт
s | Ba-ppm
s | B e-p pm
s | |---|--|---|---|--|---|---|--|---------------------------------------|--|--|---| | DU08
DU09
DU10
DU11
DU12
DU13
DU14
DU15
DU16
FB1 | 34 7 26
34 7 26
34 6 42
34 6 42
34 6 4
34 6 4
34 6 29
34 6 29
34 15 0 | 84 10 12
84 10 12
84 9 11
84 9 11
84 9 11
84 8 8
84 8 10
84 7 47
84 7 47
83 59 15 | .7
.7
.5
1.5
7
5
.7
1 | .01
.015
.015
.02
.15
.3
.007
.05 | <.005
.005
<.005
.007
.007
<.005
.01
<.005 | .07
.07
.15
.2
.5
.5
.05
.07 | 15
30
150
300
150
20
50
20 | N
N
N
N
N
N
N |

 | 300
100
200
300
1,500
500
150
500
150 | N
N
N
1.5
N
N
N | | FB2
H001
H001
H002
H002
H003
H003
H004
H004
H005 | 34 15 0
34 44 42
34 44 42
34 44 42
34 44 27
34 44 27
34 44 27
34 44 27
34 43 28 | 83 59 15
83 40 36
83 40 36
83 40 36
83 40 36
83 41 15
83 41 15
83 41 15
83 41 15
83 42 17 | 3
5
10
1
3
3
2
7
3
7 | .1
2
2
.05
.3
.3
.1
1
.7 | .007
.05
<.05
N
<.005
.007
<.05
<.05 | .1
.07
.5
.3
.2
.3
.3
.3 | 70
700
1,000
300
300
300
500
700
500
700 | N
N
N
N
N
N
N
N | <10
N

<10
<10 | 500
1,000
1,000
150
300
300
200
700
700
1,500 | N 5 5 5 <1 2 2 3 5 3 2 | | H005
H006
H006
H007
H007
H008
H008
H009
H010 | 34 43 28
34 43 10
34 43 10
34 42 58
34 42 58
34 42 58
34 42 58
34 44 42
34 44 42
34 44 42 | 83 42 17
83 41 54
83 41 54
83 41 46
83 41 46
83 41 46
83 41 28
83 41 28
83 41 28 | 10
5
7
2
2
5
3
3
3 | 1.5
1.5
1
1
.7
1
1
1
.7 | <.05
.05
<.05
1
1.5
.15
.3
.007
.02 | .5
.3
.7
.5
.5
.5
.7
.7 | 700
1,000
1,000
700
500
700
1,000
700
700
500 | N
N
N
N
N
N
N | <10

10

N
10

30 | 700
700
500
500
300
700
700
300
500 | 2
3
3
1
1
3
3
2
2
1.5 | | H011
H012
H012
H013
H013
H014
H014
H015 | 34 44 42
34 42 | 83 41 28
83 28 | 3
5
1
2
3
5
3
7
3
10 | 1
.7
.2
.2
.7
.7
.7 | .03
<.05
.007
<.05
.007
N
.007
N
.005 | .7
.7
.3
.5
.7
.7
.7
.7 | 1,500
1,000
1,500
1,000
2,000
2,000
1,000
700
1,500
1,000 | N N N N N N N N N N N N N N N N N N N | 20

<10

10

50
 | 300
300
70
200
200
500
200
300
200 | 2
1.5
N
1
2
1.5
2
1.5
2 | | H016
H016
H017
H017
H018
H019
H019
H021
H021 | 34 44 42
34 42 45
34 42 45
34 42 45
34 42 45
34 42 45
34 42 45
34 40 28
34 40 28 | 83 41 28
83 41 28
83 41 29
83 41 29
83 41 29
83 41 29
83 41 29
83 41 29
83 39 23
83 39 23 | 3
5
5
7
2
15
7
3
5 | 1
.7
1.5
1
.7
.7
.7
1
1 | .03
N
.2
.1
<.05
.007
.05
.1
.02
N | .7
.5
.3
.5
.3
.7
.7
.7 | 1,500
1,000
1,500
1,500
700
500
1,500
1,000
500
700 | N N N N N N N N N N N N N N N N N N N | 70

100
100

150

<10 | 150
150
700
700
500
300
700
500
300
300 | 1
1.5
3
2
2
2
3
3
1 | | H022
H022
H023
H023
H024
H024
H025
H025
H026 | 34 42 46
34 42 40
34 42 40
34 42 25
34 42 25
34 42 25
34 42 25
34 42 25
34 42 25 | 83 41 38
83 41 28
83 41 28
83 41 28
83 42 5
83 42 5
83 42 5
83 42 5
83 42 5
83 42 5
83 42 5 | 5
10
3
5
10
7
5
10
5 | 1.5
.7
1.5
.7
3
3
.7
1 | 1.5
1
2
1
3
7
.07
<.05
<.05 | .7
.5
.7
.5
.3
.5
.5 | 700
500
700
700
2,000
2,000
700
700
700
700 | N
N
N
N
N
N
N | 20

100
10

100
100 | 700
500
300
300
70
70
700
500
700 | 3
2
2
2
2
<1
1
3
3
1.5 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |---|--|---|---|--|---|--|---|--|--|--| | DU08
DU09
DU10
DU11
DU12
DU13
DU14
DU15
DU16
FB1 | N
N
3
3
15
10
3
3
3 | 3
5
7
10
100
100
3
5
3 | 2
1
1.5
15
150
100
3
10
30
5 | N
N
N
30
<30
N
<30
N | N
N
N
N
5
N
N
N
N | <10
N
<10
10
10
15
N
N
N | N
N
3
5
50
20
N
3
N | 15
10
15
50
20
20
10
30
15 |

 | N
N
5
30
5
N
15
N | | FB2
H001
H001
H002
H002
H003
H003
H004
H004 | 10
30
30
5
15
10
N
20
20
30 | 30
70
100
20
50
50
20
20
70 | 70
50
50
50
100
70
15
70
70 | N
100
100
N
N
30
30
70
100 | N
N
N
N
N
N
N | N
20
10
<10
10
10
10
10
15
20 | 20
70
50
5
20
30
20
30
50
70 | 15
20
70
20
15
20
20
50
30 | 20
10

10
20 | 10
30
50
N
15
30
N
50
100 | | H005
H006
H006
H007
H007
H008
H008
H009
H010 | 30
30
50
7
10
30
30
30
30 | 70
70
70
30
50
50
50
70
70 | 70
100
100
7
5
50
70
150
150 | 100
150
100
30
30
150
150
150
70 | N
N
N
N
N
N
N
N | 10
15
15
10
10
15
10
15
15 | 50
50
50
10
5
30
30
50
50 | 50
20
50
30
50
50
20
15
20 | 20

30

10
20

15 |
50
70
50
300
500
200
200
30
30
50 | | H011
H011
H012
H012
H013
H013
H014
H014
H015 | 30
50
30
70
30
70
30
50
30 | 70
70
10
20
70
70
70
70
70 | 200
200
150
150
70
70
150
150 | 150
100
70
100
70
100
100
100
50 | N
N
N
N
N
N
N | 15
20
10
15
15
15
15
15
15 | 50
50
20
20
50
50
30
50
30 | 20
30
10
10
20
20
20
50
20 | 20

7

20

20

20 | 30
50
10
N
15
N
15
N | | H016
H016
H017
H017
H018
H018
H019
H019
H021 | 30
30
30
50
30
20
100
30
15 | 70
50
70
50
50
20
150
100
70 | 150
100
150
70
70
50
70
70
100 | 70
100
70
70
100
70
100
150
100 | N
N
N
N
N
N
N
N | 15
20
20
20
20
15
20
15
10 | 30
50
50
50
100
50
100
50
30 | 20
20
30
30
20
10
30
20
10
30 | 15
15
15
15

30
 | 30
N
70
50
N
10
50
50
30 | | H022
H022
H023
H023
H024
H024
H025
H025
H026 | 15
15
15
10
70
30
30
100
50 | 50
70
70
70
300
150
70
100
70 | 50
30
30
50
100
70
50
50
20 | 150
150
70
70
<20
N
300
150
300 | N
N
N
N
N
N
N | 30
10
10
10
10
N
20
15
15 | 30
30
30
30
100
70
50
50
30 | 50
70
15
20
20
15
15
20
10 | 15

10
50

20
15 | 300
500
200
200
300
200
150
300
100 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |---|---|--|---|--|--|--|--|--|--|--|--------------| | DU08
DU09
DU10
DU11
DU12
DU13
DU14
DU15
DU16
FB1 | 15
10
15
30
300
150
10
15
7 | N
N
N
20
30
N
50
N | N N N N N N N N N N N N N N N N N N N | 300
70
700
700
150
200
50
300
150 | <.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02 | .7
.8
.73
.73
.73
.73
.73
1
.58
.75 | <10
<10
<10
<10
<10
<10
<10
<10
<10
<10 | <25
<25
<25
<25
85
180
<25
<25
<25 | 10
10
110
80
50
12
12
15
<10 | <25
<25
<25
<25
<25
<25
<25
<25
<25
<25 | | | FB2
H001
H001
H002
H002
H003
H004
H004
H005 | 70
150
100
50
70
70
70
70
70 | 30
100
70
70
150
30
20
50
50 | N
N
<200
N
N
N
N
N | 300
500
500
700
300
300
500
500
300
300 | <.02
N
N
N
N
N
N
N | .75 | <10
<10

<10
<10

<10
<10
<10 | 65
130

<25
<25

68
120 | <10
19

<10
<10

27
20 | <25
<25

<25
<25

<25
<25
<25 | | | H005
H006
H006
H007
H007
H008
H008
H009
H010 | 100
100
100
50
70
70
70
70
70 | 70
150
100
30
50
150
200
150
100 | N
N
N
N
<200
N
N
N | 200
150
150
300
300
150
150
500
300
500 | N
N
N
N
N
N
. 04
. 05 | | <10

10

<10
<10
<10 | 80

50

100
130
110 | 35

<10

28
50
53 | <25

34

<25
<25
<25 | | | H011
H012
H012
H013
H013
H014
H014
H015 | 70
100
20
70
70
150
150
150 | 100
100
15
30
70
100
70
70
70 | N N N N N N N N N N N N N N N N N N N | 300
500
300
300
300
700
300
700
300
700 | 2.6
3.1
3
8
N
.04
N
.02
.1 | | <10

<10

<10

<10 | 100

30

87

110

120 | 160

100

18

42

30 | <25

<25

<25

<25

<25 | | | H016
H016
H017
H017
H018
H018
H019
H019
H021 | 100
100
100
100
100
70
150
150
70 | 70
70
100
70
100
70
150
200
70 | N
N
N
N
N
300
N
N | 200
500
300
300
300
200
300
300
300
500 | . 02
N
. 4
. 2
. 02
N
N
N
N | | <10 <10 <10 <10 <10 < < | 110

140

100

210
75 | 46

33

25

23
38 | <25

<25

<25

<25

<25
 | | | H022
H022
H023
H023
H024
H024
H025
H025
H026 | 100
70
300
100
300
70
70
100
100 | 150
70
70
30
50
70
200
100
70 | N
N
N
N
N
N
200
N | 300
200
300
300
100
100
300
150
150 | N
N
N
.02
N
.02
N
.08
N | | <10

<10

<10
<10

<10 | 28

67

25
120

33 | 23

21

28
26

15 | <25

<25
<25
 | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|---|--|---|---|---|--|--|---------------------------------|---|--|---| | H027
H027
H028
H028
H029
H029
H030
H031
H031 | 34 42 26
34 42 26
34 42 26
34 42 36
34 42 36
34 42 36
34 42 9
34 42 9
34 41 48
34 41 48 | 83 42 0
83 42 0
83 42 0
83 42 0
83 41 18
83 41 13
83 41 13
83 41 12
83 41 12 | 15
7
7
3
3
5
.7
1
3
7 | <.05
.01
.07
.3
.7
1
.5
.2
.7 | N .05
N .005
.007
<.05
1
1 .02 | .5
.3
.7
.5
.5
.5
.15
.1 | 1,000
1,500
500
300
1,000
1,000
300
100
2,000
1,500 | N
N
N
N
N
N
N | 100

100

100

N

<10 | 70
100
300
200
300
500
1,500
1,000
700
300 | <1
N
<1
N
3
2
3
2
3
2
3 | | H032
H032
H033
H033
H034
H035F
H035F
H035W
H035W | 34 43 36
34 43 36
34 43 36
34 43 45
34 43 45
34 44 40
34 44 40
34 44 40 | 83 39 56
83 39 56
83 39 56
83 39 53
83 39 53
83 39 34
83 39 34
83 39 34
83 39 34 | .05
.5
3
2
3
5
7
3 | .05
.03
.5
.7
.3
.7
1.5 | N .005 <.05 .05 .1 .3 3 1.5 .5 | .05
.02
.7
.5
.2
.2
.5
.5 | 100
200
700
700
300
500
700
500
700
1,000 | N
N
N
N
N
N
N | N <10 N N <-10 | 300
500
500
500
100
150
700
500
500 | <1
1
1
1
<1
1
5
1.5
2
3 | | H036
H036
H037
H037
H038
H038
H039
H040
H040 | 34 44 40
34 44 40
34 44 40
34 44 40
34 44 40
34 44 58
34 44 58
34 44 58
34 44 58 | 83 39 34
83 39 34
83 39 34
83 39 34
83 39 34
83 39 33
83 39 33
83 39 33
83 39 33 | 7
3
2
2
2
2
2
3
5
3
5 | 1
1
.7
.7
.7
.5
1
1
1.5 | 1.5
2
2
1
.7
.5
.7
.3
.2 | .5
.3
.3
.2
.3
.5
.5 | 700
1,000
500
300
1,500
700
1,000
700
2,000
1,500 | N
N
N
N
N
N
N | <10

N

<10

<10 | 1,000
700
700
500
200
200
150
150
500 | 1
1
5
1
2
1
3
2
3
2 | | H041
H042
H044
H044
H045
H045
H046
H046
H047 | 34 43 15
34 43 15
34 43 15
34 43 40
34 43 40
34 43 40
34 43 40
34 43 40
34 43 40
34 44 2 | 83 42 56
83 42 56
83 42 56
83 43 39
83 43 39
83 43 39
83 43 39
83 43 39
83 43 39 | 3
3
2
7
3
3
5
7
10
5 | 1
1
.7
.7
.7
.5
.5
.3
.05 | .07 <.05 .01 <.05 .07 .01 N <.005 N <.005 | .3
.3
.5
.3
.3
.5
.7 | 700
700
500
700
500
300
500
150
100
700 | N
N
N
N
N
N | <10
N <10

<10

10
 | 1,500
1,000
200
700
700
300
300
10
15
700 | N <1 2 2
2 2 2 3 5 1 | | H047
H048
H048
H051
H051
H052
H052
H053
H053
H054 | 34 44 2
34 44 2
34 42 15
34 42 15
34 42 15
34 42 15
34 42 21
34 42 21
34 41 58 | 83 43 34
83 43 34
83 44 16
83 44 16
83 44 16
83 44 16
83 44 23
83 44 23
83 43 20 | 3
3
10
7
3
5
3
5
3 | .7
1
1
2
1.5
.2
.7
.7
1.5 | .07
.03
N
1
.7
1
.7
1.5
3 | .3
.5
.7
.5
.3
.2
.5 | 1,000
1,000
1,500
700
1,000
300
500
500
1,000
1,500 | N
N
N
N
N
N |
10
<10

<10

<10 | 700
1,500
1,500
2,000
1,500
300
300
700
700
500 | 1
3
2
1
3
1
1
1.5
3 | | H055
H059
H064
H065
H066
H072
H073
H074
H080 | 34 41 37
34 40 51
34 41 48
34 42 2
34 41 14
34 39 25
34 39 25
34 39 25
34 40 53
34 40 53 | 83 42 48
83 41 28
83 42 55
83 43 42
83 42 37
83 44 30
83 44 30
83 44 42
83 44 42 | 3
2
3
3
3
.7
3
.15 | .7
.7
1
1
.3
.2
.02
.1
N | .07
.05
1.5
.7
.015
.005
<.005
<.005
<.05 | .7
.3
.7
.7
.5
.5
.05
.15
.002 | 700
500
500
1,000
2,000
700
10,000
300
50
700 | N
N
N
N
N
N | 300
N
N
N
200
N
N
N
N | 200
500
300
700
700
200
100
30
N | 1
1
3
3
2
1
N
1
<1 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|---|--|--|--|--|--|--|---|---|--| | H027
H027
H028
H028
H029
H029
H030
H031 | 50
30
10
3
30
50
5
5
5 | 300
300
70
70
70
70
5
N
70 | 200
150
70
70
50
30
1
55
50 | N N N < 20 N 300 300 100 70 200 150 | N
N
N
N
N
N
N
N | <10
N
15
10
15
15
10
<10
10 | 100
70
70
50
30
70
3
2
30
50 | 15
10
10
<10
15
20
20
30
20
50 | 50

50

20

5

15 | N
N
5
70
50
300
500
30 | | H032
H032
H033
H033
H034
H035F
H035F
H035W
H035W | 5
10
20
15
15
30
30
30
50 | 70
20
15
70
15
70
100
70 | 20
70
70
70
30
70
150
150
100 | 20
50
100
70
50
30
150
100
70 | N
N
N
N
N
10
5
15 | N
N
15
<10
10
<10
15
15 | 10
20
30
30
5
20
30
50
20 | 70
70
70
50
20
15
30
50
70 | N

20

20

15
20 | N
30
50
30
N
5
700
700
200 | | H036
H036
H037
H037
H038
H038
H039
H040
H040 | 20
15
15
20
10
15
20
20
20 | 100
30
20
50
20
20
30
70
70 | 150
150
20
10
50
15
150
150
30 | 100
70
70
50
50
50
150
150
150 | N
N
N
N
N
N
N
N | 20
10
N
10
<10
15
10
15 | 30
30
30
30
30
30
30
50
50 | 50
30
15
30
10
10
20
50
30 | 20

10

10

15

20 | 700
200
500
1,000
50
100
100
150
100 | | H041
H042
H044
H044
H045
H045
H046
H046 | 15
20
20
30
15
15
20
3 | 70
100
50
100
30
30
70
150
300
50 | 30
15
70
70
70
70
100
150
100 | 150
150
50
50
30
30
50
N
20 | N
N
N
N
N
N
N
N | 15
15
<10
20
10
10
20
N
10 | 30
50
30
50
30
30
50
30
50
30 | 20
50
50
50
15
20
50
N
15
20 | 30
10
20

20

100
15 | 150
150
30
N
30
15
N
N | | H047
H048
H048
H051
H051
H052
H052
H053
H053
H054 | 20
30
7
10
15
50
30
15
20 | 30
70
150
100
70
10
15
70
70 | 10
100
150
500
700
10
70
70
100
200 | 70
150
150
70
70
70
100
70
150 | N
N
N
N
N
N
N
N | 10
15
15
10
10
10
<10
<15
15 | 50
50
50
30
30
20
30
20
30
20 | 15
30
50
50
20
10
20
70
70 | 20
20

10

20

15 | 70
150
150
300
150
70
150
500
300
150 | | H055
H059
H064
H065
H066
H072
H073
H074
H080 | 30
30
15
15
30
10
1,000
5
N | 150
70
70
50
70
50
2
7
N | 100
2
70
50
150
70
200
70
<5
30 | 50
50
150
70
50
N
N
N
<20 | N
N
N
N
N
N
N | 10
10
15
15
10
10
N
N | 70
20
15
20
50
20
50
20
<5 | 10
20
30
30
30
20
10
15
N | 20
10
15
10
20
20
15
50
N | 5
15
150
150
30
15
N
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |-----------------------|------------|-------------------|--------------------|-------------|--------------|----------------|--------------|--------------|--------------|--------------------|--------------| | H027
H027 | 500
150 | <10
N | N
N | 70
50 | .2
.1 | |
<10 |
69 |
44 |
< 25 | | | H028 | 150 | 20 | N | 500 | . 02 | | | | | | | | H028 | 70 | 20 | N | 300 | N | | <10 | <25 | 15 | <25 | | | H029 | 50 | 200 | N | 300 | N | | <10 | 140 | 19 | <25 | | | H029 | 70 | 150 | N | 700 | N | | | | | | | | H030 | 70
30 | 15 | N | 300 | N | | <10 | 40 | <10 | <25 | | | H030
H031 | 30
7 | 10
150 | N
N | 150
300 | N
. 02 | | <10 | 170 | 18 |
<25 | | | H031 | 70 | 100 | N | 700 | . 02
N | | | 170 | 10 | | | | 11031 | 70 | 100 | 1, | 700 | " | | | | | | | | H032 | 10 | N | N | 10 | N | | | | | | | | H032 | 70 | 15 | N | 30 | N | | <10 | <25 | <10 | 40 | | | H033 | 100 | 100 | N | 700 | N | | | | | | | | Н033 | 150 | 70 | N | 300 | N | | <10 | 50 | 20 | 35 | | | H034 | 100 | 30 | N | 200 | N | | | | | | | | H034 | 100 | 30 | N | 150 | N | | <10 | 93 | 17 | <25 | | | H035F | 50
70 | 150 | -200
N | 200
200 | N
N | | <10 | 130 | 110 | <25
 | | | H035F
H035W | 70
70 | 70
50 | <200
<200 | 200 | N
N | | | | | | | | H035W | 70
70 | 50
50 | ~200
N | 150 | N | | <10 | 140 | 75 | <25 | | | 11000# | 70 | 30 | | 100 | ,, | | | 2.10 | , , | -20 | | | H036 | 100 | 70 | <200 | 300 | N | | | | | | | | H036 | 50 | 50 | N | 300 | N | | <10 | 130 | 75 | <25 | | | H037 | 30 | 50 | N | 300 | N | | <10 | 79 | 16 | <25 | | | H037 | 70 | 50 | N | 200 | N | | | | | | | | H038 | 70 | 30 | N
 | 100 | N | | <10 | 49 | 23 | <25 | | | H038 | 50 | 50 | N | 150 | N | | | 110 | | | | | Н039
Н0 3 9 | 70
100 | 150
100 | N
N | 300
700 | N
N | | <10 | 110 | 23 | <25
 | | | H040 | 70 | 150 | N N | 200 | N | | <10 | 220 | <10 | <25 | | | H040 | 100 | 100 | 200 | 300 | N | | | | | | | | | 100 | 100 | 200 | | | | | | | | | | H041 | 70 | 150 | N | 300 | .06 | | <10 | 120 | 12 | <25 | | | H041 | 70 | 50 | N | ຸ 200 | N | | | | | | | | H042 | 70 | 30 | N | 200 | N | | <10 | 130 | 20 | 35 | | | H044 | 100 | 70
50 | N | 300 | N | | -10 | | | | | | H044 | 70
150 | 50 | N | 300
500 | N
N | | <10
<10 | 97
42 | 25
17 | <25
<25 | | | H045
H 04 5 | 150
100 | 30
30 | N
N | 300 | N
N | | -10 | 42 | | | | | H046 | 70 | 15 | N | 70 | N | | <10 | <25 | 30 | <25 | | | H046 | 300 | 20 | Ň | 150 | N | | | | | | | | H047 | 70 | 50 | N | 200 | N | H047 | 70 | 30 | N | 700 | N | | <10 | 140 | <10 | <25 | | | H048 | 100 | 150 | N | 30 0 | N | | <10 | 140 | 55 | <25 | | | H048 | 100 | 100 | .000 | 200 | N | | | | | | | | H051 | 70 | 70 | <200
N | 100
300 | N
N | | <10 | 120 | 600 | <25 | | | н051
н 05 2 | 100
50 | 150
50 | N
N | 100 | N
N | | | 120 | | | | | H052 | 30 | 70 | N | 70 | N | | <10 | 35 | 34 | <25 | | | H053 | 70 | 50 | <200 ^{''} | 100 | Ñ | | | | | | | | H053 | 100 | 100 | N | 300 | N | | <10 | 47 | 28 | 40 | | | H054 | 100 | 150 | 500 | 300 | N | | <10 | 500 | 16 0 | <25 | | | UOCC | 100 | 70 | a. | 200 | k i | | -10 | 60 | 24 | عور | | | H055 | 100 | 70
30 | N | 200 | N | | <10 | 68 | 34 | <25 | | | H059
H064 | 70
100 | 30
15 0 | N
N | 300
300 | N
N | | <10
<10 | 94
<25 | <10
25 | <25
<25 | | | H065 | 100 | 100 | N | 300 | N | | <10 | 72 | 15 | 25 | | | H066 | 150 | 30 | Ň | 100 | N | | 20 | 90 | 110 | <25 | | | H072 | 100 | 10 | N | 300 | N | | <10 | <25 | 12 | <25 | | | H 07 3 | 10 | 10 | Ň | 50 | Ň | | <10 | 35 | 30 | <25 | | | H074 | 70 | N | N | 70 | N | | <10 | <25 | 11 | <25 | | | ново | _ N | N | N | N | N | | | <5 |
<5 | 10 | 8 | | H081 | 70 | 20 | <200 | 200 | .06 | | | 70 | 65 | 70 | 6 | | | | | | | | | | | | | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sampl e | La titude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|---|---|--|--|--|--|---------------------------------------|--|--|--| | H082
H083
H084
H085
H086
H087
H088
H089
H090 | 34 40 53
34 40 53
34 40 37
34 40 19
34 40 15
34 40 15
34 39 56
34 39 56
34 39 56 | 83 44 42
83 44 42
83 44 7
83 44 7
83 44 6
83 44 6
83 43 59
83 43 59
83 43 59 | 2
2
.15
2
3
3
.3
1
.7 | .5
.03
.02
.7
.7
.7
.03
.07 | <.05
<.05
.2
<.05
<.05
.05
.05
N | .3
.07
.01
.3
.3
.3
.01
.07 | 500
700
30
300
500
500
200
300
300
30 | N
N
N
N
N
N
N | N
N
N
<10
20
150
<10
N
<10
<10 | 150
N
50
300
500
2,000
70
100
30 | 1
1
<1
2
5
2
N
<1
<1
<1 | | H092
H093
H094
H095
H096
H097
H098
H099
H100
H101 | 34 39 58
34 39 44
34 39 44
34 39 44
34 39 44
34 39 44
34 39 40
34 39 40
34 39 40 | 83 44 0
83 44 11
83 44 11
83 44 11
83 44 11
83 44 11
83 44 18
83 44 18
83 44 18 | .3
.7
1
1.5
3
3
1.5
.7 | .02
.07
<.02
.05
.03
.03
.05
.07 | <.05
N
N
<.05
<.05
N
N
N | .007
.05
.02
.1
.03
.05
.05
.07 | 1,000
30
20
200
2,000
1,000
200
700
700
200 | N
N
N
N
N
N
N | <10
10
N
<10
<10
<10
10
10
10 | 20
150
50
200
70
70
100
150
200 | 2 <1 <1 <1 1 1 <1 <1 <1 <1 <1 <1 <1 <1 | | H102
H103
H104
H105
H106
H107
H108
H601
HB01
HB02 | 34 39 38
34 39 38
34 39 40
34 39 42
34 39 42
34 39 38
34 37 52
34 37 52
34 37 52 | 83 44 19
83 44 19
83 44 19
83 44 17
83 44 17
83 44 20
83 34 38
83 34 38
83 34 32 | 1
1
. 7
3
. 7
1.5
. 3
. 5
. 05
. 5 | <.02
.03
.07
.1
.07
.1
<.02
.15
.2 | <.05
<.05
<.05
<.05
<.05
N
N
.15 | .1
.07
.05
.1
.05
.07
.007
.1 | 200
500
700
300
500
300
150
200
700 | N
N
N
N
N
N
N | <10
<10
<10
<10
<10
<10
<10
<10
0
<10 | 70
100
200
100
150
200
50
500
1,000 | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 1 1 1 1 1 2 1 .5 | | HB02
HB03
HB04
HB04
HB05
HB05
HB11
HB12
HB13 | 34 37 52
34 38 33
34 38 20
34 38 20
34 38 6
34 38 6
34 55 29
34 55 29
34 55 28 | 83 34 32
83 35 15
83 35 15
83 34 46
83 34 46
83 34 35
83 31 7
83 31 7
83 31 6 | 3
5
.7
.7
.05
5
3
3
7 | .5
1 .1
.1 .3
.7
1
1.5
.7 | .02
.1
<.05
.5
1
N
.007
<.05
.15 | .3
.5
.05
.07
1
.7
.3
.7 | 500
700
700
300
500
700
700
1,500
2,000 | N
N
N
N
N
N
N |
10

N
<10

N
N | 300
1,000
1,500
700
1,000
500
300
500
150
300 | 2
3
2
2
2
2
1
1.5
<1
2 | | HB14
HM1
HM2
HM3
HM4
HM5
HM6
HM7
HM8
J1 | 34 55 28
34 3 45
34 4 20
34 4 30
34 4 30
34 4 30
34 4 45
34 4 45
34 6 20
34 25 11 | 83 31 6
83 59 0
83 59 0
83 59 0
83 59 0
83 59 0
83 59 30
83 59 30
84 1 30
84 8 50 | 1.5
1.5
7
7
.7
1.5
1.5
1 | .3
.15
.2
.15
<.02
.1
.07
.05
.5 | .15
.07
<.05
<.05
<.05
<.05
<.05
<.05
<.05 | .1
.1
1
.03
.5
.3
.15 | 1,000
150
2,000
300
30
50
700
300
700 | N
N
N
N
N
N
N | N N 150 200 N 30 <10 <10 200 15 | 500
200
700
100
70
300
500
300
1,000
700 | <1
3
1
1.5
<1
1.5
<1
<1
<1
1.5
2 | | J2
BL01
BL02
BL03
BL03
BL04
BL04
BL05
BL05 | 34 25 11
34 52 29
34 52 29
34 52 26
34 52 29
34 52 29
34 52 29
34 52 29
34 52 26
34 52 26 | 84 8 50
83 34 10
83 34 10
83 34 20
83 34 15
83 34 15
83 34 15
83 34 15
83 33 58
83 33 58 | 1
15
7
3
5
3
1
1
5
7 | .2
5
5
1
1.5
1
.5
.5
.07 | 1
3
7
2
<.05
.05
.7
1
N
.005 | .1
.7
.3
.7
.7
.3
.15
.2
.2 | 500
2,000
1,500
700
1,000
1,000
700
500
700
700 | N N N N N N N N N N N N N N N N N N N | 10
N

<10

<10
N | 70
50
30
200
500
200
700
500
20 | <1
N
N
2
2
2
2
3
2
1
1 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La- ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb- ppm
s | Sc-ppm
s | Sr-ppm
s | |--|--|--|---|--|---------------------------------------|---|---|---|---|---| | H082
H083
H084
H085
H086
H087
H088
H089
H090 | 10
7
N
10
15
15
10
7
7 | 10 <10 <10 30 50 100 <10 <10 <10 <10 <10 <10 | 20
20
<5
10
15
50
<5
<5
<5 | N
N
N
50
100
20
N
N
N | N
N
N
N
N
N
N
N | 10
<10
N
10
20
10
<10
<10
N | 10
5
N
7
10
10
5
5 | <10
N
15
20
20
N
15
N | 15
10
N
10
20
20
N
10
7 | N N N N 100 <100 <100 N N N N N N N N N N N N N N N N N N | | H092
H093
H094
H095
H096
H097
H098
H099
H100
H101 | N
N
7
10
10
<5
20
20 | N <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | <5
15
10
20
50
30
15
10
20 | N
N
N
N
N
N
N | N
20
N
N
N
N
N
N | 10
<10
N
<10
N
<10
<10
<10
<10 | <5
5
7
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 50
<10
<10
10
N
15
<10
N
<10 | 5
10
5
10
15
20
10
10
10 | N
N
N
N
N
N
N | | H102
H103
H104
H105
H106
H107
H108
HB01
HB01
HB01 | 15
15
15
20
10
10
7
7
10
50 | <10
<10
N
<10
<10
<10
<10
N
70 | 10
20
30
30
<5
30
<5
15
20 | N
N
N
N
N
N
N | N
N
5
N
N
N
N
N | <10
<10
<10
<10
<10
<10
70
N
10
20 | 5
7
5
5
5
7
N
<2
50 | N N 10 <10 <10 <10 <20 30 20 30 50 | 7
10
7
10
7
10
7

N
20 | N
N
N
N
N
30
100 | | HB02
HB03
HB03
HB04
HB05
HB05
HB11
HB12
HB13 | 15
20
70
3
N
30
20
10
70 | 30
70
150
1
N
70
70
50
150 | 70
70
100
7
20
30
30
20
20
30 | 70
150
150
N
N
70
70
70
70
50 | N
N
N
N
N
N
N | 10
15
15
N
<10
20
15
<10
<10 | 30
30
50
N
N
30
30
15
20 | 30
20
50
50
70
50
20
30
<10
30 | 50

N
20

15
15 | 100
70
150
150
700
N
15
<100
<100
<100 | | HB14
HM1
HM2
HM3
HM4
HM5
HM6
HM7
HM8
J1 | 10
N
15
10
<5
<5
N
15
20 | 5
<5
200
150
<5
70
15
15
200 | 30
15
20
30
7
10
30
10
20 | <20
20
<20
<20
<20
<20
<20
<20
<20
<20
< | N
N
N
N
N
N
N | <10
30
15
15
<10
10
10
<10
15 | 10
<5
20
15
5
<5
<5
<5
70 | 50
30
20
30
<10
15
<10
<10
15 | <5
<5
30
20
<5
7
5
<5
30 | <100
N
<100
<100
N
<100
<100
N
<100
N | | J2
BL01
BL01
BL02
BL03
BL03
BL04
BL04
BL05
BL05 | 5
50
30
15
30
30
15
10
20 | 10
100
100
50
70
70
15
20
200 |
<5
200
150
70
150
100
3
10
30
70 | 20
N
N
70
150
150
70
100
20
30 | N
N
N
N
N
N
N | <10 <10 N 15 20 15 10 10 10 10 | 70
50
30
30
70
30
15
5
30 | <10
50
30
30
50
20
50
70
<10 | <5
50

30

5
50 | 50
200
150
150
N
20
150
200
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |--|--|--|---|--|---|------------------|--|--|---|---|---| | H082
H083
H084
H085
H086
H087
H088
H089
H090 | 50
30
<10
50
70
100
<10
15 | 20
10
N
20
50
15
N
<10
N | <200
N
N
<200
<200
<200
N
N
N | 300
70
N
150
200
150
70
70 | .9
N
N
N
N
N
N
N | |

 | 64
23
<5
84
44
12
<5
25
6 | 30
26
<5
42
27
77
8
<5 | 8
10
<5
24
8
10
<5
12
8
22 | 6
4
4
4
2
3
3
4
3 | | H092
H093
H094
H095
H096
H097
H098
H099
H100
H101 | <10 <10 15 10 30 20 10 10 <10 15 | 20
20
<10
15
<10
<10
15
20
20 | N N N N N N N N N N N N N N N N N N N | 70
100
70
70
50
70
50
150
70 | N .5
.3 .7
26 .2
.2 .2
2.6 .2 | |

 | <5
<5
5
<5
32
6
<5
<5
5 | <5
17
42
14
58
26
9
10
12
18 | 6
12
16
10
8
36
6
<5
8 | 4
60
8
4
4
3
2
2
2
2
2 | | H102
H103
H104
H105
H106
H107
H108
HB01
HB01
HB01 | 30
50
<10
50
<10
15
<10
7
10 | 10
15
20
15
20
20
10
20
15
30 | N
N
N
N
N
N | 50
70
100
50
150
200
30
300
500
700 | .02
.08
.1
.3
4.9
17
.02
N | |

<10
 | 5
6
12
15
9
7
5
<25 | 9
17
44
39
10
32
6
<10 | <5
6
10
6
8
24
<25 | <2
2
4
2
4
<2
<2
 | | HB02
HB03
HB03
HB04
HB04
HB05
HB05
HB11
HB12
HB13 | 70
150
150
7
10
200
150
70
150 | 30
150
150
20
30
50
50
70
30
30 | N
N
<200
N
N
N
<200
N | 200
150
200
20
50
700
300
150
70 | N
N
. 02
N
N
N
N
N | | <10
<10

<10

10
 | 58
130

<25

170
70
44
59 | 22
24

<10

<10
<5
10
<5 | <25
<25

<25

<25
16
14 |

2
<2
<2 | | HB14
HM1
HM2
HM3
HM4
HM5
HM6
HM7
HM8
J1 | 20
10
150
200
15
70
50
30
150
200 | 10
30
15
30
N
N
<10
<10
10
30 | N
N
N
N
N
N
N | 70
200
300
500
30
700
700
200
300
200 | N
N
N
N
N
. 02
N | |

 | 20
10
13
10
<5
16
7
6
18
80 | <5
<5
16
19
<5
6
<5
14
30 | 12
12
18
10
<5
8
<5
<5 | <2
2
2
2
<2
2
2
2
2
2
2 | | J2 BL01 BL01 BL02 BL03 BL03 BL04 BL04 BL05 BL05 | 10
500
300
70
200
150
20
20
100 | 10
30
20
50
200
150
70
70
50 | N
N
N
N
N
N
N
N | 200
15
N
300
700
300
100
150
50 | N
.04
N
.04
.02
N
.02
N |

 |
<10
<10

10
<10

<10 | 14

<25
60

230
56

41 | <5

110
39

29
<10

16 | <5

<25
<25

<25
<25

<25 | 4

 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |--|--|--|---|---|---|---|--|---|---|--|--| | BL06
BL07
BL07
BL08
BL08
BL09
BL09
BL10
BL10 | 34 52 25
34 52 25
34 51 50
34 51 50
34 51 52
34 51 52
34 51 52
34 51 52
34 51 30
34 51 30 | 83 33 57
83 33 57
83 34 20
83 34 20
83 34 37
83 34 37
83 34 37
83 34 49
83 34 49 | 5
5
2
2
1
3
1.5
1 | .07
.2
.2
.07
.2
.7
.2
.2 | N .005 .3 .3 .7 1 .2 .2 .005 N | .3
.3
.05
.07
.1
.1
.07
.1 | 700
700
700
500
500
1,000
1,500
1,000
1,000
700 | N
N
N
N
N
N
N
N | N

N
N

N | 50
50
30
30
70
100
70
70
70 | 1
1
N
<1
1
N
N
N | | BL12
BL13
BL13
BL17
BL17
BL18
BL18
BL19
BL19 | 34 51 32
34 51 32
34 51 32
34 51 32
34 49 54
34 49 54
34 50 3
34 50 3
34 52 4 | 83 35 4
83 35 4
83 35 4
83 35 4
83 35 14
83 35 14
83 35 34
83 35 34
83 32 16
83 32 16 | .5
1
5
3
2
3
3
2
1.5 | .2
.1
.2
.5
.05
.3
.7
.7 | .1
.1
N .005
1.5
3 .7
.7 .07 | .05
.1
.2
.3
.1
.15
.7
.3
.15 | 200
200
700
1,500
300
500
1,000
70
200
200 | N
N
N
N
N
N
N |
N
N

N

N | 30
50
300
300
30
50
500
500
150
200 | N <1 1 1 1 1 1 3 2 N 1 | | BL20
BL20
BL21
BL21
BL22
BL22
BL25
BL25
BL26
BL26 | 34 52 5
34 52 5
34 50 37
34 50 20
34 50 20
34 50 20
34 49 59
34 49 59
34 49 12
34 49 12 | 83 32 36
83 32 36
83 34 56
83 34 56
83 34 32
83 34 32
83 36 25
83 36 25
83 35 0 | 3
5
7
5
3
5
1
1.5
3 | .7
2
.03
<.02
.03
.02
.2
.3
.1 | 5
3
.07
<.05
.015
<.05
.5
1.5
N | .15
.2
.15
.2
.15
.5
.2
.15 | 1,000
1,000
2,000
1,500
300
500
200
200
700 | N
N
N
N
N
N
N
N |
N

N

N
N | 50
50
50
30
30
50
200
200
100
70 | N <1 N <1 N <1 1 1.5 2 1 1 | | BL29
BL29
BL33
BL33
BL35
BL35
BL37
BL37
BL40
BL41 | 34 47 21
34 47 50
34 47 50
34 47 15
34 47 15
34 47 15
34 46 18
34 51 32
34 51 32 | 83 36 0
83 36 0
83 36 41
83 36 41
83 33 10
83 37 7
83 37 7
83 35 9
83 35 9 | 2
3
5
5
5
1.5
3
3 | .3
.5
.5
.2
.5
.5
.5
.7
.7 | .03 <.05 .15 .05 .07 <.05 .005 .005 | .15
.3
.3
.7
.3
.5
.3
.7
.3 | 1,500
1,000
300
300
500
700
700
1,000
500
700 | N
N
N
N
1
N
N | N

N

50

N
<10
<10 | 100
200
150
200
500
500
150
300
300 | N 1 N <1 1 1 1 N 1.5 1 1 .5 | | OS1
OS2
MATO1
MATO2
MATO3
MATO4
MATO5
MATO6
MATO7
MATO8 | 34 57 33
34 57 33
34 18 40
34 19 27
34 19 41
34 19 55
34 19 56
34 20 19
34 21 7
34 21 20 | 83 43 46
83 43 46
84 13 50
84 13 17
84 13 1B
84 13 7
84 13 6
84 12 50
84 12 58
84 12 58 | . 2
. 15
5
7
5
5
1
5
3 | <.02 <.02 <.5 .1 .7 .3 .07 .07 .15 | <.02
<.02
.015
.02
.05
.03
.005
.03 | <.002
<.002
.3
.5
.5
.3
.1
.5 | 20
20
1,000
500
200
500
70
150
500
200 | N
N
N
N
N
N | N
N

 | <20
<20
700
700
300
700
500
700
700
1,000 | N
N
1
2
2
2
2
N
1.5
1.5 | | MAT10
MAT11
MAT12
MAT13
MAT14
MAT15
MAT16
MAT17
MO5
MO7 | 34 20 23
34 20 21
34 20 22
34 20 22
34 20 23
34 20 24
34 20 35
34 20 29
34 28 8
34 28 8 | 84 13 5
84 13 10
84 13 10
84 13 10
84 13 10
84 13 10
84 13 33
84 11 13
83 58 2
83 58 2 | 10
10
>10
7
7
7
7
7
7
10 | <.005
.015
.007
.07
.3
.7
.3
.2
1.5 | .007
.01
.02
.03
.07
.03
.03
.07
<.05 | .015
.7
.015
.5
.3
.5
1 | 100
1,000
2,000
300
500
500
500
500
1,000
700 |
N
N
N
N
N
N
N
N
N |

50 | 50
100
150
700
500
700
500
700
500
700 | N
N
N
1.5
1.5
3
1.5
3 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-pp m
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-p pm
s | Sr-ppm
s | |--|--|---|---|---|---------------------------------------|---|---|---|--|---| | BL06
BL06
BL07
BL07
BL08
BL08
BL09
BL10
BL10 | 15
15
15
15
15
30
50
50
30
70 | 20
15
30
70
20
15
10
10
30 | 70
70
70
30
30
70
70
30
150 | N
N
30
20
N
N
N
N
N | N
N
3
N
N
N
N
N | 10
15
<10
<10
<10
<10
<10
<10
<10 | 30
30
10
<2
5
15
15
70 | 10
15
10
<10
20
20
15
20
10 | 30

15
30

20

50 | N
N
7
N
N
30
5
N
N | | BL12
BL13
BL13
BL17
BL17
BL18
BL18
BL19
BL19 | 15
15
20
20
5
5
15
15 | 50
70
50
50
N
5
50
30
20 | 70
70
200
150
10
30
100
30
30
20 | N
N
100
150
N
N
50
50 | N
N
N
N
N
N
N
N | <10 <10 <10 10 <10 10 10 <10 N 10 10 10 <10 <10 | 30
10
5
30
<2
N
5
15
15 | N
N
70
70
10
10
50
30
15 | 10
20

15

15

5 | N N N 30 100 150 300 150 30 N | | BL20
BL20
BL21
BL21
BL22
BL22
BL25
BL25
BL25
BL26 | 30
50
30
50
15
20
5
5 | 300
700
100
100
10
20
10
10
10 | 15
10
70
100
70
100
20
7
70 | N
N
N
N
20
50
<20 | N
N
N
N
N
N
N
N | N <10
N <10
<10
<10
<10
<10
<10
10 | 150
150
30
5
15
5
N
3
<2 | 15
20
15
20
20
50
30
20
30 | 50

30

20
10

30 | 100
100
5
N
N
200
200 | | BL29
BL29
BL33
BL33
BL35
BL35
BL37
BL37
BL40
BL41 | 15
50
20
20
7
15
20
30
15 | 7
10
100
100
50
70
30
50
30 | 70
70
700
300
100
150
70
100
20 | N <20 N <20 300 300 70 200 N | N
N
N
N
N
N
N | <10
10
<10
10
20
10
10
10
10 | 3
<2
70
50
10
2
20
30
10
7 | 10
20
10
15
20
70
20
50
<10 | 20

30

20

10
10 | N
N
5
N
100
100
15
N
100
200 | | OS1
OS2
MAT01
MAT02
MAT03
MAT04
MAT05
MAT06
MAT07
MAT08 | N
N
50
50
15
20
N
7
15 | <5
<5
50
70
70
30
10
100
70 | 10
5
30
70
50
50
15
70
50 | <20
<20
150
70
100
150
N
N
50 | * * * * * * * * * * * * * * * * * * * | <10
<10
10
10
10
20
<10
10 | N
N
20
30
30
20
5
30
20
15 | N
20
30
30
50
20
50
50
30 | N
N

 | N
N
10
70
70
70
15
30
70 | | MAT10
MAT11
MAT12
MAT13
MAT14
MAT15
MAT16
MAT17
MO5
MO7 | N
70
70
15
30
15
20
15 | 5
200
20
150
100
100
70
100
70 | 15
200
150
100
70
100
200
70
50 | N
N
<30
N
30
50
N
150
50 | N
N
N
N
N
N
N
N | N
N
10
10
10
15
20
<10 | 7
100
50
50
50
30
50
20
20 | 10
10
15
50
50
30
30
50
50 |

30 | N
5
5
15
20
50
10
100
<100 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |--|--|---|---|--|--|--|---|---|--|---|--------------------------------------| | BL06
BL06
BL07
BL07
BL08
BL08
BL09
BL10
BL10 | 100
150
50
70
70
150
70
150
150 | N
N
30
20
20
30
15
15 | N N N N N N N N N N N N N N N N N N N | 150
300
10
10
50
300
70
300
50
100 | .02
N
N
N
.02
N
N
N | | <10
<10

<10
<10
<10

<10 | <25
<25

-9
99
32

35 | 13
19

18
15

31 | <25
<25

<25
<25
<25

<25 | | | BL12
BL12
BL13
BL13
BL17
BL17
BL18
BL18
BL19
BL19 | 20
50
100
70
10
15
100
70
50 | N
N
50
50
50
50
50
30
15 | N
N
N
N
N
N | 30
20
150
150
70
70
500
300
150
200 | N
N
N
N
N
.04
N
N | | <10

<10

<10

<10
<10 | <25

87

<25

68
45 | 24

120

12

15
<10 | 28

<25

<25

<25

<25
 | | | BL20
BL20
BL21
BL21
BL22
BL22
BL25
BL25
BL26
BL26 | 150
150
150
200
70
150
20
30
200
150 | 10
10
<10
N
N
N
15
20
15 | N N N N N N N N N N N N N N N N N N N | 10
10
15
20
70
200
500
300
150
200 | N
N
N
N
N
. 02
N
. 02
N | | <10

<10

<10

<10

<10 | <25

28

<25

51

37 | <10

16

13

<10

13 | <25

<25

<25

<25

<25 | | | BL29
BL29
BL33
BL33
BL35
BL35
BL37
BL37
BL40
BL41 | 70
150
150
200
70
70
50
100
50 | 10
15
10
15
150
150
30
100
20 | N
N
N
N
N
N
N | 100
200
100
150
150
200
700
200
200 | N
N
.02
N
.04
N
N |

 | <10

<10

<10

<10 | 62

50

46

<25

50
43 | 15

330

43

15

30
47 | <25

<25

<25

<25

<5 |

<2
<2 | | OS1
OS2
MATO1
MATO2
MATO3
MATO4
MATO5
MATO6
MATO7
MATO8 | <10
<10
70
150
150
100
20
150
100
150 | N
N
150
70
70
70
N
10
70 | N
N
N
N
N
N
N | N
N
200
150
200
200
200
150
300 | N
N
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02 | 1.2
2.5
.95
.95
1
1.2
1.2 | <10
<10
<10
<10
<10
<10
<10
<10
<10 | <25
<25
140
50
40
60
<25
<25
50 | 60
10
15
15
25
50
15
25
25 | <25
<25
<25
<25
<25
<25
<25 | N
N
 | | MAT10
MAT11
MAT12
MAT13
MAT14
MAT15
MAT16
MAT17
M05
M07 | 30
500
30
300
150
300
300
150
200 | N
15
20
15
30
70
30
70
70 | N
N
N
N
N
N
N
N
N | N
70
10
150
150
200
150
300
300 | <.02
.03
<.02
<.02
<.02
<.02
<.02
<.02
N | .6
1.3
.54
1.2
.9
1.2
.71
.95 | <10
<10
<10
10
<10
10
10
<10
<10
<10 | <25
25
<25
26
60
120
25
140
75 | 50
15
50
150
25 | <25
<25
<25
45
<25
<25
<25
<35 | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct. | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |---|--|--|--|---|--|--|--|---|---|---|--| | M08
M10
M11
M12
M13
M14
M15
M16
M17 | 34 28 8
34 8 | 83 58 2
83 58 2
83 58
2
83 58 2
83 58 2
83 58 2
83 58 3
83 58 3
83 58 3 | 7
5
7
7
5
7
5
7 | 1
.7
.7
1
.7
.7
1
.5
1 | .005
.01
.015
<.005
.015

<.05
.015
.01 | .7
.5
.2
.3
.15
.2
.5
.15 | 700
500
10,000
1,500
500
300
700
300
200
300 | 1
N
N
N
N
N
<.5
N |

<10
 | 500
700
700
700
200
200
300
150
150 | N
N
1.5
N
3
N
2
N | | M18
M19
M20
M21
M22
M24
M25
M26
M27
M28 | 34 28 8
34 28 8
34 28 8
34 28 8
34 28 7
34 28 7
34 28 7
34 28 7
34 28 7 | 83 58 3
83 58 3
83 58 4
83 58 4
83 58 5
83 58 5
83 58 5
83 58 6
83 58 6 | 5
10
5
10
3
7
7
7
2
1.5 | .7 1 .5 1.5 .7 .05 .7 .05 .7 .05 | .01
<.05
.007
<.05
.01
<.05
.015
.02 | .3
.7
.3
1
.2
1
.1
.5
.5 | 700
700
500
700
500
1,000
200
300
200
150 | N
<.5
N
<.5
N
<.5
N
N
N |
<10

200

70

 | 500
100
500
500
500
200
70
700
700
150 | 2
1.5
2
1
N
<1
1.5
1.5
N | | M29
M30
M31
M32
M33
M34
M35
M36
M37 | 34 28 7
34 7 | 83 58 6
83 58 6
83 58 7
83 58 8
83 58 8
83 58 9
83 58 9
83 58 10
83 58 10
83 58 13 | 15
5
10
5
10
7
7
15
7 | .5
.7
.7
.7
1
.07
.7
.7
.5 | <.05
.015
<.05
<.05
<.05
.01
.01
.1
<.05 | 1
.15
.7
.7
1
.2
.5
.5 | 1,500
1,000
1,500
3,000
500
1,500
700
2,000
700 | <.5
N
<.5
<.5
N
N
N | 70

10
200
50

10
10
70 | 150
100
100
>5,000
700
70
1,000
300
500
700 | 1
1.5
1
2
1.5
3
1.5
<1
1 | | M39
M40
M40
M41
M41
M42
M42
M43
M43 | 34 28 8
34 28 8
34 28 10
34 28 10
34 28 12
34 28 12
34 28 13
34 28 13
34 28 58 | 83 58 10
83 58 17
83 58 17
83 58 19
83 58 19
83 58 25
83 58 25
83 58 28
83 58 28
83 58 28 | 10
7
10
5
3
7
5
3
5 | .05 3 1 1.5 1 1 1 1 <.02 | .05
7
5
1
2
.1
.15
.7
1 | .5
.2
.3
.3
.5
.7
.3 | 2,000
1,500
700
700
1,500
500
1,000
1,000
500
100 | N
N
N
N
N
N
N | 10

N
50

150

100
N | 300
15
20
500
700
700
700
700
500
30 | 1.5
N
N
1.5
2
7
3
3
1.5 | | M45
M48
M50
M50
M51
M51
M52
M52 | 34 28 58
34 28 32
34 28 19
34 28 19
34 28 21
34 28 21
34 29 22
34 29 22
34 29 23 | 83 58 42
83 58 46
83 58 36
83 58 36
83 58 36
83 58 38
83 58 21
83 58 21
83 58 21 | 1
7
3
10
3
3
10
5
15 | .01
.5
.3
2
2
1
1
2
2 | .2
<.05
.05
2
3
.7
.2
.5 | .07
.5
.07
.5
.2
.3
.7
.3 | 70
1,000
500
700
700
700
700
1,000
1,500 | N
N
N
N
N
N | 10

70

20

N | 15
150
150
500
500
700
700
50
50 | N
2
3
1.5
3
2
N
<1 | | M54
M58
M58
MC01
MC01
MC02
MC02
MC03
MC03
MC05 | 34 29 23
34 29 45
34 29 32
34 32 | 83 58 21
83 56 35
83 56 35
83 58 57
83 58 57
83 58 57
83 58 57
83 58 57
83 58 57 | 1.5
1
.7
10
3
3
10
10
3
3 | .7
.05
.03
1
.7
1.5
1.5
2
1.5 | .7
<.05
.03
N
.05
.07
<.05
3 | .15
.2
.15
.7
.5
.7
.7
.5 | 500
2,000
1,000
1,000
300
200
500
700
300
500 | N N N N N N N N N N N N N N N N N N N | N
N

20

50
20
 | 50
150
70
700
700
700
700
700
1,000
700
500 | <1
1
1
2
1.5
1.5
1
1
1 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |---|--|---|---|--|--|--|---|--|---|---| | M08
M09
M10
M11
M12
M13
M14
M15
M16
M17 | 20
10
20
15
10
10
10
10 | 100
50
30
100
50
50
70
30
50
7 | 100
30
70
70,000
70
50
20
20
50
50 | 100
50
50
30
30
30
70
50
30 | N
N
N
N
N
<5
N | 20
15
10
10
N
10
<10
10
N | 30
20
20
20
15
15
20
15 | 50
50
30
50
20
50
10
20
10 |

10
 | 5
15
5
10
N
5
<100
N
N | | M18
M19
M20
M21
M22
M24
M25
M26
M27
M28 | 15
15
7
20
7
10
5
15 | 20
70
30
200
30
70
7
100
30 | 70
50
30
70
30
50
7
70
30
50 | 50
100
N
100
N
20
N
30
N | N
<5
N
<5
N
<5
N
N
N | 10
<10
10
<10
10
<10
N
20
20 | 20
50
15
50
7
20
3
30
7 | 20
15
15
30
20
<10
N
30
20 | 15

20

15
 | 10
<100
5
<100
10
<100
N
20
10 | | M29
M30
M31
M32
M33
M34
M35
M36
M37 | 20
10
20
20
20
30
10
50
15 | 300
70
200
100
150
150
70
100
70 | 70
70
70
100
50
300
50
150
20 | 100
30
50
30
30
<30
N
100
100 | <5
N
<5
<5
<5
N
N
N | <10
N
<10
<10
<10
N
10
10
15 | 100
30
50
20
50
70
20
50
20 | <10
20
<10
20
30
10
20
20
30
50 | 100

50
30
30

50
10 | <100
N
<100
<100
<100
N
20
N
50 | | M39
M40
M41
M41
M42
M42
M43
M43
M43 | 100
30
70
30
20
30
30
7
10 | 200
150
300
70
30
70
70
50
70 | 200
100
150
30
50
100
70
30
10
5 | 70
N .
<20
70
70
200
300
30
50 | N
N
N
N
N
N
N
N | 10
N
10
10
10
100
70
20
N | 150
100
100
30
30
15
30
10
5 | 20
N
10
30
30
100
50
30
50
<10 | 70

70
20

30

15
5 | N
150
200
200
150
100
150
150
200
70 | | M45
M48
M48
M50
M50
M51
M51
M52
M52
M54 | N
20
30
15
15
25
20
30
50 | 1
50
70
50
30
70
150
200 | 1
70
50
50
50
30
20
30
20 | N
150
150
70
70
100
100
N
N | N
N
N
N
N
N
N | <10
15
10
15
15
30
20
N | N
30
50
20
30
15
15
50
50 | N
50
20
70
20
30
50
10
30 | 15

20

15

50 | 30
50
30
500
150
150
200
30
<50 | | M54
M58
M58
MC01
MC01
MC02
MC02
MC03
MC03
MC05 | 10
30
20
50
30
30
30
20
15 | 10
10
5
100
70
70
100
100
50 | 70
10
30
30
70
70
70
50
30
70 | N
N
N
70
70
70
70
50
50 | N
N
N
N
N
N | <10
<10
N
20
15
15
15
15 | 2
20
30
30
30
30
30
30
30
30
30 | 15
10
10
50
30
30
50
100
50
20 | 15
5

20

30
15
 | 150
N
5
50
70
30
N
200
150 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-pp m
s | Au-ppm
aa | Hg-ppm
inst | .As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo-ppm
aa | |------------|-------------|------------|-------------|----------------------------|--------------|----------------|---------------|--------------|--------------|--------------------|--------------| | M08 | 150 | 70 | N | 15 0 | . 02 | | <10 | 120 | <24 | 35 | 2 | | M09 | 100 | 50 | N | 200 | N | | 10 | 60 | <24 | 25 | <2 | | M10 | 70 | 50 | N | 100 | . 02 | | 60 | 75 | 48 | 40 | <2 | | M11 | 150 | 30 | N | 70 | N | | <10 | 75 | <24 | 30 | 2 | | M12 | 70 | 15 | N | 100 | N | | <10 | 50 | 180 | <25 | <2 | | M13 | 70 | 20 | N | 150 | N | | 10 | | <24 | | | | M14 | 200 | 20 | <200 | 300 | N | | <10 | 140 | | 25 | 4 | | M15 | 100 | 20 | N | 70 | N | | | | | | | | M16 | 70 | 15 | N | 100 | . 02 | | 10 | 70 | <24 | 40 | 2 | | M17 | 10 | 20 | N | 50 | N | | <10 | <25 | <24 | <25 | <2 | | M18 | 50 | 50 | N | 150 | N | | <10 | 50 | 300 | <25 | 2 | | M19 | 200 | 100 | <200 | 200 | N | | <10 | 120 | | 25 | 8 | | M20 | 70 | 15 | N | 30 0 | .02 | | 10 | 30 | 180 | <25 | 2 | | M21 | 300 | 50 | <200 | 50 0 | N | | <10 | 145 | | 25 | 4 | | M22 | 70 | 30 | N | 20 0 | N | | <10 | <25 | <24 | <25 | <2 | | M24 | 200 | 15 | <200 | 300 | .2 | | <10 | 100 | -04 | 25 | 4 | | M25 | 15 | N | N
N | 70 | . 02 | | 60
30 | <25 | <24 | <25 | <2 | | M26 | 150 |
30
30 | N | 200 | . 02 | | 20 | 30 | 600 | <25 | 2 | | M27 | 70 | 30
30 | N
N | 200 | . 02
. 04 | | 30
10 | 30 | <24
<24 | <25 | 2
<2 | | M28 | 15 | 30 | | 150 | | | 10 | <25 | ~24 | <25 | | | M29 | 700 | 100 | <200 | 200 | N | | 40 | 105 | | 25 | 10 | | M30 | 70 | 15 | N | 30 | . 02 | | 10 | 60 | 300 | <25 | <2 | | M31 | 500 | 50 | <200 | 70 | N | | <10 | 125 | | 30 | 8 | | M32 | 200 | 20 | <200 | 200 | N | | 20 | 120 | | <25 | 8 | | M33 | 200 | 30 | <200 | 300 | N | | <10 | 170 | 1 000 | <25 | 8 | | M34 | 200 | 10 | N | 30 | N | | , N | 45 | 1,080 | <25 | 2 | | M35 | 100 | 30 | N | 200 | . 02 | | 10
10 | 40
68 | 240 | <25 | 4 | | M36 | 300 | 150 | N | 150
500 | N
N | | <10 | 76 | 44
16 | <2 5
<25 | | | M37
M38 | 70
70 | 50
50 | N
N | 700 | N | | <10 | 83 | 16 | <25 | | | M39 | 500 | 70 | N | 150 | N | | <10 | 95 | 120 | <25 | | | M40 | 300 | 30 | N
N | . 30 | N | | <10 | <25 | 41 | <25 | | | M40
M40 | 30 0 | 30 | N
N | 500 | N | | -10 | | | | | | M41 | 100 | 50 | N
N | 300 | N | | | | | | | | M41 | 70 | 70 | N N | 300 | Ň | | <10 | 60 | 26 | <25 | | | M42 | 100 | 100 | N. | 700 | N. | | | | | | | | M42 | 70 | 150 | N N | 70 0 | Ň | | 10 | 73 | 33 | <25 | | | M43 | 70 | 20 | N | 300 | N | | <10 | 76 | 13 | <25 | | | M43 | 100 | 20 | N | 200 | N | | | | | | | | M45 | <10 | 50 | N | 200 | N | | | | | | | | M45 | 7 | 50 | N | 300 | .02 | | <10 | <25 | <10 | <25 | | | M48 | 70 | 70 | N | 300 | N | | | | | -05 | | | M48 | 70 | 150 | N | 200 | N | | 20 | 85 | 17 | <25 | | | M50 | 100 | 50 | N | 300 | N | | -10 | 70 | | | | | M50 | 70
70 | 70 | N | 30 0
5 00 | N
N | | <10
<10 | 73
87 | 23
15 | <25
<25 | | | M51 | 70
50 | 70 | -200
N | | | | 10 | | | | | | M51
M52 | 50
150 | 50 | <200
N | 500
30 | N
N | | <10 | 44 | 10 | <25 | | | M52 | 150
200 | <10
10 | <200 | 100 | N | | ~10 | | | | | | M54 | 30 | 15 | _200
N | 100 | N | | <10 | <25 | 41 | <25 | | | M54 | 50 | 10 | N | 150 | N | | | | | | | | M58 | 100 | 10 | N N | 50 | N. | | | | | | | | M58 | 30 | 10 | Ň | N | N | | <10 | 28 | 17 | <25 | | | MC01 | 200 | 70 | N | 500 | . 06 | | | | | | | | MC01 | 15 0 | 70 | N | 300 | N | | 100 | 68 | 27 | <25 | | | MCO2 | 150 | 70 | N | 300 | N | | 60 | 110 | | | | | MC02 | 200 | 50 | N | 300 | . 06 | | | | | | | | MC03 | 100 | 30 | <200 | 200 | .06 | | | | | | | | MC 03 | 150 | 70 | N | 200 | N | | 10 | 82 | | | | | MC05 | 150 | 30 | N | 200 | . 05 | | 10 | 63 | 28 | <25 | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct. | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |---|--|--|---|--|---|--|---|---|--|--|---| | MC05
MC06
MC07
MC07
MC08
MC08
MC09
MC09
MC10 | 34 29 32
34 32 | 83 58 57
83 57 | 15
3
10
3
5
15
5
3
10 | .7
1
1.5
1
1
1.5
1.5
.2
.1 | <.05
.05
<.05
.02
N
<.05
.07
.005
N | .7
.7
.7
.5
.5
.7
.7 | 2,000
200
700
500
700
2,000
700
300
700
700 | N
N
N
N
N
N
N
N | 20

50

10
20

50
30 | 500
500
700
700
300
1,000
700
500
500 | 1
1
1
1
1
1.5
1
1.5 | | MC10
MC11
MC11
MC12
MC12
MC13
MC13
MC14
MC15
MC16 | 34 29 32
34 32 | 83 58 57
83 59 0
83 59 0 | 7
3
15
5
15
15
3
3
3 | 1
1
1
1.5
1.5
.7
.1
.1 | .007
.005
N
.03
<.05
<.05
.01
N | .7
.7
.7
.7
1
.7
.3
.5
.7 | 300
1,500
3,000
1,500
1,500
3,000
1,500
500
200
500 | N
N
N
N
N
N
N | 10

50
15

20
20 | 700
300
300
200
500
150
150
200 | 2
1
1
1.5
1
1
1
1
1 | | MC17
MC20
MC21
MC22
MC23
MC24
MC25
MC26
MC27
MC28 | 34 29 32
34 32 | 83 59 0
83 0 | 2
15
15
10
15
.7
20
>20
2
15 | .3
7
10
5
7
.05
5
5
.05 | N
5
10
10
5
.1
3
2
.05 | .5 1 1 .2 >1 .05 >1 .05 >1 >1 | 300
3,000
3,000
3,000
200
3,000
5,000
200
3,000 | N < .5 < .5 < .5 < .5 < .5 < .5 < .5 < . | 30
20
20
10
20
<10
70
100
10 | 300
1,000
1,500
700
1,500
50
2,000
2,000
50
1,500 | 1
2
1
1
1
<1
2
2
<1
2 | | MC29
MC30
MC31
MC32
MC33
MC34
MC35
MC36
MC37
MC38 | 34 29 32
34 32 | 83 59 0
83 0 | 15
15
7
15
10
20
15
15
10 | 7
7
3
7
3
7
7
7
7 | 3
5
2
5
5
3
3
1.5
7 | >1
>1
.15
>1
.7
1
.5
.5
.3 | 3,000
3,000
3,000
2,000
3,000
1,500
1,000
1,500 | <.5 | 50
50
10
15
10
20
30
20
10
50 | 1,000
1,000
300
1,500
1,000
1,000
1,000
1,000
1,000 | 2
2
1
2
1
1
2
2
2
1
1 | | MC39
MC40
MC41
MC42
MC43
MC44
MC45
MC46
MC47
MC48 | 34 29 32
34 29 32
34 29 32
34 29 32
34 29 32
34 29 32
34 31 47
34 29 32
34 29 32
34 29 32 | 83 59 0
83 59 0
83 59 0
83 59 0
83 59 0
83 59 0
83 22 32
83 59 0
83 59 0
83 59 0 | 15
10
15
15
15
20
15
15 | 5
7
7
7
7
5
.3
5
5 | 1.5
1.5
10
3
5
2
1
10
5
3 | 1
1
.5
.7
1
1
.15
1 | 700 2,000 1,500 1,000 2,000 1,000 >5,000 1,500 1,500 1,000 | <.55 | 10
20
10
10
30
50
15
50 | 1,500
1,000
700
1,000
1,500
300
1,000
1,500
700 | 1
1
2
1
2
2
2
2
1
1 | | MC49
MC50
MC51
MC52
MC53
MC54
MC55
MC55
MC56
MC57
MT1 | 34 29 32
34 29 32
34 29 32
34 29 32
34 29 32
34 29 32
34 31 47
34 29 32
34 29 32
34 29 15 | 83 59 0
83 59 0
83 59 0
83 59 0
83 59 0
83 59 0
83 22 32
83 59 0
83 59 0
83 59 9 | 15
5
10
7
15
7
20
10
15
3 | 7
1.5
7
2
7
5
.5
7
7 | 3
2
1.5
2
1
1
1
1
1 | 1
.1
.7
.2
.7
.5
.3
.5
.5 | 1,500
1,500
1,000
1,500
1,000
1,500
>5,000
1,000
1,000
500 | <.55 <.55 <.55 <.55 <.5 <.7 N <.5 N <.5 N | 10
<10
<10
<10
<10
50
30
15
70
70 | 1,000
150
1,000
500
1,000
700
1,500
1,500
500 | 1 <1 2 1 2 2 1 1 2 2 2 1 1 2 2 1 1 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu- ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|---|---|--|---|--|---|--|---|---|---| | MC05
MC06
MC06
MC07
MC07
MC08
MC08
MC09
MC09
MC10 | 100
30
50
15
15
30
20
20 | 100
70
100
70
70
150
70
70
100
150 | 50
70
70
10
20
70
100
70
20 | 30
70
70
50
70
50
30
N
20 | N
N
N
N
N
N
N
N | 15
10
15
10
15
15
10
15
20 | 50
30
50
50
20
50
30
30
30 | 20
20
30
30
30
100
70
15
10
30 | 20

20

15
20

20
30 | N
30
N
15
N
50
30
15 | | MC10
MC11
MC11
MC12
MC12
MC13
MC13
MC14
MC15
MC16 | 30
15
50
20
30
50
30
30
15 | 70
50
150
70
150
100
30
50
50 | 150
150
100
70
100
50
30
30
20 | 70
70
70
100
100
30
30
<20
<20 | N
N
N
N
N
N
N | 15
15
15
20
15
10
10 | 50
30
50
30
50
30
30
70
50 | 30
300
300
500
500
20
15
10 | 20

30
30

15
15 | 15
10
N
15
<50
N
7
N
N | | MC17
MC20
MC21
MC22
MC23
MC24
MC25
MC26
MC27
MC28 | 15
50
30
10
50
<5
70
100
<5 | 50
150
150
15
200
5
150
200
<5 | 30
100
5
5
5
5
10
70
2 | 50
20
20
<20
50
<20
50
70
<20 | N <2 <2 <2 <2 <2 <2 <2 <2
<2 <2 <2 <2 <2 | <10
20
15
10
30
10
15
20
10 | 50
100
70
30
100
<2
100
150
<2 | 15
50
20
10
30
<10
15
70
<10
20 | 15
50
50
10
70
<5
50
70
<5 | N
500
500
150
500
<50
300
200
<50
300 | | MC29
MC30
MC31
MC32
MC33
MC34
MC35
MC36
MC37
MC38 | 70
70
<5
70
15
50
50
20 | 200
200
5
200
100
150
150
30
200 | 10
70
50
70
50
50
10
10
70 | 50
30
<20
30
20
30
20
20
20
20
20 | <2
<2
<2
<2
<2
<2
<2
<2
<2
<2
<2
<2 | 30
50
15
50
20
30
10
15
15 | 100
100
20
100
50
70
70
50
30 | 30
30
10
20
<10
20
20
15
20
30 | 50
70
5
70
20
50
30
30
20
50 | 500
500
100
500
150
500
200
200
200 | | MC39
MC40
MC41
MC42
MC43
MC44
MC45
MC45
MC46
MC47
MC48 | 50
70
70
50
70
70
30
70
70 | 150
150
100
150
200
200
15
150
150 | 150
10
150
50
30
20
50
15
30 | 20
20
<20
<20
20
20
N
20
20
20
20 | <2
<2
<2
5
10
5
N
5
<2 | 20
30
20
20
20
20
N
30
20 | 70
70
70
70
100
70
30
70
70 | 50
30
50
50
50
50
30
70
20 | 50
50
30
50
70
50
15
30
30 | 150
200
300
300
300
200
70
300
300
100 | | MC49
MC50
MC51
MC52
MC53
MC54
MC55
MC56
MC57
MT1 | 70
<5
50
10
50
30
100
70
20 | 150
<5
150
20
150
70
30
150
100
70 | 50
5
30
50
10
5
100
50
30 | 20
<20
70
20
50
50
N
100
150 | 5
<2
15
<2
<2
<2
<2
N
15
15 | 20
10
15
10
20
20
<10
15
20 | 70
10
70
20
50
30
200
70
50 | 150
100
700
10
20
20
30
200
150
30 | 50
10
30
15
50
30
15
30 | 500
70
200
150
150
150
50
150
150 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo~ppm
aa | |--------------|------------|------------|--------------|--------------------|--------------|----------------|--------------|------------------|-----------------|--------------|--------------| | MC05 | 150 | 30 | N | 300 | .1 | | | | | | | | MC06 | 150 | 50 | N | 300 | N | | <10 | 100 | 25 | <25 | | | MC06 | 150 | 50 | N | 300 | . 02 | | | | | | | | MC07 | 150 | 70 | N | 3 00 | N | | 10 | 130 | 19 | <25 | | | MC07 | 100 | 30 | N | 500 | .06 | | | | | | | | MC08 | 200 | 50 | <200 | 300 | .06 | | | | | | | | MC08 | 150 | 70 | N
 | 300 | .6 | | <10 | 120 | 35 | 45 | | | MC09 | 150 | 50 | N | 300 | N | | <10 | <25 | 16 | <25 | | | MCO9 | 150 | 30 | N | 700 | . 04 | | | | | | | | MC10 | 200 | 70 | <200 | 50 0 | .04 | | | | | | | | MC10 | 200 | 100 | N | 30 0 | N | | 200 | 100 | 42 | <25 | | | MC11 | 150 | 70 | N | 200 | N | | 60 | 140 | 39 | 230 | | | MC11 | 200 | 50 | 200 | 300 | .04 | | | | | | | | MC12 | 150 | 10 | N | 20 0 | N | | 100 | 210 | 28 | 260 | | | MC12 | 300 | 70 | 30 0 | 50 0 | . 02 | | | | | | | | MC13 | 200 | 30 | <200 | 300 | . 04
N | | <10 | 72 | <10 |
<25 | | | MC13
MC14 | 100 | 30
15 | N
N | 150
300 | .04 | | <10 | 30 | 37 | <25 | N | | MC14
MC15 | 100 | 15
20 | N | 30 0 | .04 | | <10 | 30 | 36 | <25
<25 | N | | MC15
MC16 | 100
100 | 20
20 | N | 150 | <.02 | | 20 | 100 | 63 | <25 | N | | | | | | | | | | | | | | | MC17 | 100 | 15 | N | 200 | . 02 | | 40 | 110 | 60 | <25 | N | | MC20 | 200 | 70 | <200 | 200 | . 02 | . 07 | <10 | 45 | 100 | <25 | | | MC21 | 200 | 100 | <200 | 300 | <.02 | . 05 | 10 | 40 | 60 | <25 | | | MC22 | 150 | 15 | <200 | 100 | <.02 | .04 | 10 | <25 | 40 | <25 | | | MC23 | 200 | 70 | <200 | 300 | .02 | .16 | <10 | 80 | 45 | <25 | | | MC24 | 10 | <5
70 | <200 | <10
300 | < . 02 | . 2
. 06 | <10
<10 | <25
70 | 15
40 | <25
<25 | | | MC25
MC26 | 300
500 | 70
100 | <200
<200 | 500 | <.02
<.02 | .03 | <10 | 70 | 20 | <25 | | | MC27 | 15 | 100
<5 | <200 | <10 | <.02 | . 05 | <10 | <25 | 10 | <25 | | | MC28 | 500 | 70 | <200 | 500 | <.02 | . 09 | <10 | 110 | 80 | <25 | | | MC29 | 300 | 50 | <200 | 300 | <.02 | . 07 | <10 | 110 | 35 | <25 | | | MC30 | 500 | 100 | <200 | 500 | <.02 | .1 | <10 | 95 | 65 | <25 | | | MC31 | 150 | 10 | <200 | 100 | <.02 | . 07 | <10 | 35 | 50 | <25 | | | MC32 | 500 | 150 | <200 | 700 | <.02 | . 07 | 10 | 90 | 50 | <25 | | | MC33 | 300 | 50 | <200 | 200 | <.02 | . 08 | <10 | 50 | 50 | <25 | | | MC34 | 300 | 150 | <200 | 300 | <.02 | . 2 | <10 | 80 | 60 | <25 | | | MC35 | 200 | 50 | <200 | 200 | <.02 | . 08 | <10 | 75 | 40 | <25 | | | MC36 | 200 | 70 | <200 | 200 | < . 02 | . 13 | <10 | 80 | 40 | <25 | | | MC37 | 200 | 20 | <200 | 150 | < . 02 | . 18 | <10 | 45 | 95 | <25 | | | MC38 | 300 | 100 | <200 | 300 | <.02 | .16 | 10 | 85 | 40 | <25 | | | MC39 | 200 | 70
70 | <200
<200 | 200
30 0 | <.02
<.02 | .3
.18 | <10
<10 | 70
5 0 | 50
20 | <25
<25 | | | MC40
MC41 | 300
200 | 70
70 | <200 | 150 | .06 | .24 | <10 | 60 | 135 | | | | MC41
MC42 | 200 | 50 | <200 | 200 | <.02 | .24 | <10 | 50 | 40 | | | | MC43 | 200 | 100 | <200 | 200 | <.02 | .26 | <10 | 75 | | | | | MC44 | 200 | 70 | <200 | 200 | <.02 | .17 | <10 | 80 | | | | | MC45 | 50 | 30 | N | 70 | 2.9 | . 48 | >10 | 35 | | | | | MC46 | 200 | 70 | <200 | 300 | <.02 | . 25 | <10 | 70 | | | | | MC47 | 150 | 70 | <200 | 300 | <.02 | .1 | <10 | 60 | | | | | MC48 | 150 | 50 | <200 | 200 | <.02 | .21 | 10 | 30 | | | | | MC49 | 200 | 100 | <200 | 300 | <.02 | .11 | <10 | 70 | | | | | MC50 | 70 | 70 | <200 | 100 | <.02 | .14 | <10 | <25 | | | | | MC51 | 200 | 70 | <200 | 150 | <.02 | .22 | <10 | 130 | | | | | MC52 | 100 | 15 | <200 | 150 | <.02 | .11 | 10 | <25 | | | | | MC53 | 200 | 70 | <200 | 200 | <.02 | .2 | <10 | 75
25 | | | | | MC54 | 150 | 50 | <200 | 200 | .38 | . 23 | <10 | 35 | | | | | MC55 | 70 | 30 | 500 | 150 | .14 | .34 | 10 | 50 | | | | | MC56 | 150 | 50
70 | <200 | 200 | <.02 | . 25 | <10 | 120 | | | | | MC57 | 200 | 70
50 | <200 | 200 | <.02 | . 13 | 20 | 80
75 | | | | | MT1 | 150 | 5 0 | N | 300 | N | | 10 | /5 | 40 | <25 | | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Latitude | Longitude | Fe-pct.
s | Mg-pct.
s | Ca-pct.
s | Ti-pct.
s | Mn-ppm
s | Ag-ppm
s | B-ppm
s | Ba-ppm
s | Be-ppm
s | |---|--|---|---|--|---|--|--|--|---|--|--| | MT1
MT2
MT3
MT3
MT4
MT4
MT5
MT5 | 34 29 15
34 15 | 83 59 9
83 9 | 5
3
5
3
10
3
7
1.5
2 | 1
.5
1
.5
1.5
.5
1.5
.2
.7 | 1.5
1.5
1.5
.07
<.05
.07
<.05
.007
<.05 | 1
.5
1
.7
1
.7
1
.2
.7 | 500
500
500
200
500
300
500
300
500 | N
N
N
N
N
N
N
N | 30

15

20

30

N | 500
500
700
1,000
300
300
150
300
500 | 2
1
2
1
2
1
1.5
N | | MT6
SA1
SA2
SA3
SA4
SU1
SU2
SU3
R1
TF1 | 34 29 15
34 58 30
34 57 22
34 56 10
34 6 30
34 6 45
34 7 30
34 53 0
34 42 42 | 83 59 9
83 10 41
83 10 50
83 11 0
83 11 58
84 1 45
84 2 30
84 1 50
84 7 0
83 24 24 | 3
5
3
5
3
10
1
2 | .7
1
1.5
1.5
.7
.5
.15
.3
<.02 | .15
.05
.05
.15
<.02
<.05
.03
.5
<.02
<.05 | .7
.7
1
1
.7
.7
.1
.15
<.002 | 300
700
700
700
300
1,500
50
1,000
50
150 | N
N
N
N
N
< . 5
N
N | <10
<10
10
<10
300
N
N
N | 500
300
500
500
300
2,000
500
200
<20
700 | 1
1
1
1
1.5
3
<1
1
N | | TF2
TF2R
TF3
TF4
TF5
TF6
TI3
TI4
TI5 | 34 44 24 34 44 24 34 41 43 34 37 38 34 37 38 34 52 18 34 52 18 34 49 52 34 49 3 | 83 23 48
83 23 48
83 25 22
83 26 30
83 26 30
83 27 28
83 27 28
83 25 31
83 25 25 | .7
1.5
7
7
7
15
1.5
7
3 | .05
.07
1.5
.7
1.5
1
.3
.3
.5 | <.05
<.05
<.05
<.05
<.05
<.05
<.05
<.05 | .2
.5
>1
1
1
1
.1
.7
1 | 20
150
500
1,000
700
3,000
300
500
300
500 | N
N
N
N
N
N
N | N
10
300
15
300
70
N
<10
20 | 150
300
3,000
700
1,500
1,500
70
200
1,000
1,500 | <1 N 3 1.5 2 2 1 1.5 <1 <1 | | T17
T01
T02
T03
T04
T05
T06
TM2
TM2
TM2
TM3 | 34 46 55
34 33
45
34 33 50
34 36 17
34 36 18
34 36 0
34 46 18
34 46 18
34 46 18 | 83 24 0
83 22 16
83 22 18
83 22 15
83 21 10
83 22 11
83 21 1
83 21 1
83 38 15
83 38 15 | 1.5
2
15
1.5
2
10
.7
3
7 | .3
.3
>10
.2
.3
1.5
.07
1.5 | .7
.7
20
1
2
3
.7
.07
<.05
.05 | .5
.15
1
.15
.3
>1
.3
.3
.7 | 700
1,500
3,000
1,000
1,500
2,000
1,000
700
700
150 | N
N
N
N
N
N
N | 15
N
15
<10
N
<10
N

N | 1,000
3,000
30
1,500
1,500
700
2,000
300
300
700 | N 1 1.5 2 1.5 3 3 1 | | TM3
TM4
TM4
TM5
TM5
TM6
TM6
TM7
TM7 | 34 46 18
34 45 18
34 45 11
34 45 11
34 45 11
34 45 11
34 45 11
34 45 2
34 45 2
34 38 12 | 83 38 15
83 39 15
83 39 26
83 39 26
83 39 26
83 39 26
83 39 55
83 39 55
83 39 55 | 10
10
3
3
5
5
5
3
3
2
7 | .3
.5
.3
.7
1
2
1
1 | N
N
. 05
. 02
N
<.05
. 07
1
. 7 | .5
.7
.3
.5
.5
.3
.5 | 150
2,000
1,500
500
700
1,000
500
700
500
1,500 | N
N
N
N
N
N
N | <10
10

<10
<10

<10

<10 | 1,000
1,000
700
700
500
1,000
700
1,000
1,000
300 | 1
2
N
2
5
2
2
2
2
1
<1 | | TU2
TU3
TU4
TU5 | 34 37 53
34 37 52
34 38 30
34 38 20 | 83 19 34
83 19 30
83 17 0
83 17 0 | 7
1.5
10
2 | .3
.3
7
.5 | <.05
.7
3
5 | .7
1
.5
.2 | 150
2,000
2,000
700 | N
N
N | 700
N
 | 700
3,000
300
700 | <1
<1
N | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | Co-ppm
s | Cr-ppm
s | Cu-ppm
s | La-ppm
s | Mo-ppm
s | Nb-ppm
s | Ni-ppm
s | Pb-ppm
s | Sc-ppm
s | Sr-ppm
s | |--|--|--|---|--|--|---|--|---|--|---| | MT1
MT2
MT3
MT3
MT4
MT4
MT5
MT5 | 30
15
30
20
50
20
30
15
20 | 100
70
100
70
100
70
100
15
50 | 150
70
150
70
70
70
70
30
20 | 50
30
30
70
50
N
30
N
20 | N
N
N
N
N
N
N | 20
15
15
15
20
15
15
<10
15
20 | 50
30
30
30
50
30
50
20
30 | 50
50
100
30
50
20
30
10
20
50 | 20

20

50

20

10
30 | 200
150
300
30
50
7
N
N
N | | MT6
SA1
SA2
SA3
SA4
SU1
SU2
SU3
R1
TF1 | 20
10
15
15
15
30
5
N
5 | 70
50
50
70
15
150
<5
<5 | 100
20
10
7
10
30
<2
<2
30
20 | 50
30
30
50
30
50
30
N
<20
30 | N
<5
N
N
<5
N
N
N | 15
10
<10
10
<10
15
<10
<10
<10 | 30
50
50
50
30
20
5
< 5
N | 20
15
15
15
15
50
50
10
N | 15
10
15
10
15
7
20
N | 30
N
N
50
N
150
100
50
N | | TF2
TF2R
TF3
TF4
TF5
TF6
TI3
TI4
TI5 | N
N
N
15
<5
150
<5
10
N | 55
500
100
150
150
15
70
20 | 10
30
<5
50
30
100
20
70
30
20 | 20
20
300
70
70
100
50
150 | N
N
N
N
N
N
N | 10
<10
10
15
30
20
<10
15
15 | 7
<5
5
15
5
5
5
7
10
5 | 15
20
150
150
30
150
10
70
15 | 5
<5
70
20
30
20
<5
15
5 | N <100 <100 <100 <100 <100 <100 <100 <10 | | T17
T01
T02
T03
T04
T05
T06
TM2
TM2
TM3 | <5
N
70
N
N
30
N
20
20 | 7
<5
700
50
N
150
N
50
70 | 15
15
100
10
<5
70
5
100
100 | 20
30
N 20
30
150
30
150
100 | N
N
N
N
N
N
N
N | 10
10
<10
10
10
15
10
10 | 5
5
150
5
<5
50
5
30
50
3 | 10
30
<10
15
15
20
15
50 | <5
5
70
10
5
30
<5

15 | <100 <100 <100 <100 150 100 <100 157 N 70 | | TM3
TM4
TM5
TM5
TM5
TM6
TM6
TM7
TM7 | N
150
30
10
15
30
15
20 | 30
150
70
30
50
70
70
70
30 | 200
20
10
30
30
30
15
150
70 | 50
50
30
50
50
150
150
20
N | 300
N
N
N
N
N
N
N | 15
20
10
10
15
15
10
15 | N
30
15
20
20
50
30
20
15 | 20
100
30
15
50
70
30
50
20 | 5
30

15
15
15

15
 | <50
50
15
70
70
100
100
700
200
<100 | | TU2
TU3
TU4
TU5 | N
N
10
N | 70
N
100
1 | 50
20
100
N | 70
30
N
N | N
N
N | 15
<10
N | 7
5
30
N | 10
10
20
10 | 20
5
 | <100
<100
100
100 | Table 2. - Analyses of rock and saprolite samples.--Continued | Sample | V-ppm
s | Y-ppm
s | Zn-ppm
s | Zr-ppm
s | Au-ppm
aa | Hg-ppm
inst | As-ppm
aa | Zn-ppm
aa | Cu-ppm
aa | Pb-ppm
aa | Mo∽ppm
aa | |-----------------------------|--------------------|------------------|----------------------|---------------------|--------------|----------------|--------------|-------------------|---------------|--------------|-------------------| | MT1 | 200 | 50 | N | 300 | N | | | | | | | | MT2 | 150 | 30 | Ň | 150 | .06 | | 20 | 75 | 42 | 42 | | | MT2 | 200 | 50 | N | 500 | N | | | | | | | | MT3 | 150 | 70 | N | 300 | N | | 60 | 130 | 24 | <25 | | | MT3 | 200 | 70 | N | 500 | N | | | | | | | | MT4 | 150 | 30 | N | 200 | N | | 20 | 150 | 29 | <25 | | | MT4 | 150 | 50 | N | 200 | N | | | | | | | | MT5 | 30 | 20 | N | 150 | N | | 10 | 60
 | 10 | <25 | | | MT5
MT6 | 100
1 50 | 30
30 | N
<200 | 200
300 | N
.06 | MT6 | 150 | 30 | N | 200 | N . | | 10 | 122 | 31 | <25 | | | SA1 | 70 | 20 | N | 200 | . 04 | | | 72 | 16 | 25 | N | | SA2 | 70 | 20 | <200 | 150 | .04 | | | 80 | 26 | <25 | N | | SA3 | 100
70 | 15 | <20 0
<200 | 1 50
150 | .06
.04 | | | 10 0
72 | 13
21 | 25
30 | N
N | | SA4
SU1 | 200 | 10
3 0 | <200 | 300 | . 04
N | | | 43 | 18 | 8 | 2 | | SU2 | 15 | 15 | -200
N | 30 | Ň | | | 9 | <5 | 10 | 3 | | SU3 | <10 | 15 | Ň | 200 | Ň | | | 32 | <5 | <5 | 4 | | R1 | <10 | N | N | N | N | | | <25 | 52 | <25 | N | | TF1 | 30 | 15 | N | 500 | .2 | | 10 | <25 | <10 | 25 | | | TF2 | 20 | <10 | N | 150 | . 08 | | | 20 | 95 | 100 | N | | TF2R | 30 | 10 | N | 300 | N | | | <5 | <5 | 10 | <2 | | TF3 | 500 | 150 | N | 300 | N | | | 5 | < 5 | 32 | 2 | | TF4 | 150 | 100 | N
N | 5 0 0
700 | N | | | 28 | 16
20 | 48
18 | 2
4 | | TF5
TF6 | 200
2 00 | 70
100 | <200 | 700 | N
.04 | | | 8
160 | 42 | 48 | <2 | | TI3 | 30 | <10 | -200
N | 150 | N . U-4 | | | <5 | 5 | 6 | <2 | | TI4 | 150 | 30 | Ň | 300 | N | | | 22 | 26 | 20 | 4 | | TI5 | 50 | 30 | N | >1,000 | N | | | 17 | <5 | 7 | 2 | | TI6 | 100 | 20 | N | 300 | N | | | 21 | <5 | 24 | <2 | | TI7 | 30 | 10 | N | 300 | N | | | 8 | <5 | <5 | 2 | | T01 | 15 | 30 | N | , 70 | N | | | 7 | <5 | <5 | <2 | | T02 | 700 | 30 | N | 30 | N | | | 5 | 37 | < 5 | 2 | | T03 | 15 | 50 | N | 70
70 | N
N | | | 11
14 | <5
<5 | 5
5 | 2
<2 | | T 04
T 0 5 | 30
300 | 30
100 | N
N | 500 | N
N | | | 80 | 17 | 6 | <2 | | T06 | 10 | 30 | N | 70 | N | | | 9 | | 8 | 2 | | TM2 | 70 | 150 | N | 200 | N N | | <10 | 230 | 28 | <25 | | | TM2 | 70 | 150 | <200 | 700 | N | | | | | | | | TM3 | 70 | 70 | N | 300 | N | | <10 | 27 | 40 | <25 | | | TM3 | 50 | 30 | N | 700 | N | | | | | | | | TM4 | 200 | 100 | N | 700 | N | | | | | | | | TM4 | 70 | 50 | N | 30 0 | N | | <10 | <25 | <10 | 50 | | | TM5 | 70
70 | 50
50 | N | 30 0 | N | | <10 | 69 | <10 | | | | TM5 | 70
70 | 50
100 | N
N | 700
700 | N
.02 | | | | | | | | TM6
TM6 | 70
70 | 150 | N | 300 | N N | | <10 | 150 | <10 | | | | TM7 | 100 | 20 | N | 700 | .02 | | -10 | | | | | | TM7 | 70 | 30 | N | 300 | N | | <10 | 85 | 27 | | | | TU1 | 30 | 50 | N | 100 | Ň | | | 56 | <5 | | <2 | | TU2 | 150 | 70 | N | 30 0 | N | | | 10 | | | <2 | | TU3 | 15 | 30 | , N | 70 | N | | | 5 | <5 | | 2 | | TU4 | 100 | 50 | 500 | 100 | .04 | .8 | <10 | 220 | | | | | TU5 | 20 | 30 | N | 100 | . 09 | .38 | <10 | 45 | <10 | <25 | | Table 3. XRF Trace element analyses of mica schist (all data in parts per million). | 0r
(20) | 45
108
120
120 | 22222 | 22222 | L20
L20
L20
L20 | 31
100
552
552
553 | 109
99
64
L20
95 | 112
92
82
L20
514 | 87
38
242
33
27 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | |--------------------
--|--|--|---|---|---|---|---|---| | Zn
(5) | 62
72
39
58 | 52
130
65
51
53 | 52
64
62
48 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 56
64
179
27
52 | 158
104
114
38
151 | 118
166
147
39
96 | 215
97
98
45
38 | 31
200
97
113
24 | | ეე
(<u>მ</u>) | 102
30
50
37
25 | 16
36
7
18
17 | 16
16
16
17
17
17
17
17
17
17
17
17
17
17
17
17 | 10
27
28
32 | 33
50
42
118
63 | 88 82 84
46 85 8 | 49
211
177
65
126 | 65
114
121
19 | 41
175
34
82
58 | | . (S) | 132
48
105
16 | 8
41
7
6 | 8 9 G 5 G | 8
12
10
13
28 | 17
28
45
284
74 | 57
32
66
64 | 47
74
121
43
375 | 234
234
33
69 | 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 | | MD
(10) | | | L10
L10
L10 | 110
110
110
110 | L10
L10
L10
L10 | | | L10
L10
L10
L10 | | | ම්
වී | 7
15
12
17 | 12
13
10
10 | 1118
1144
1144 | 18
17
13
14 | 100
100
100
100
100 | 2 C C C C C C C C C C C C C C C C C C C | 12
20
16
16 | 22
18
18
20 | 22
17
18
20
8 | | Zr
(10) | 175
363
289
402
248 | 268
256
270
270 | 214
229
229
244 | 337
247
289
334
319 | 335
321
295
83
506 | 510
510
510
702 | 202
224
347
322
120 | 335
653
120
552
328 | 180
235
238
238
171 | | رق | 18
19
29
21
45 | 50
73
74
75
75 | 30
40
40
19 | 11
98
98
14 | 21
40
115
6 | 110
39
59
10 | 78
52
48
14 | 222
322
188
15 | 111
555
255
43 | | 요
(8) | ក្រ
ភភភ
9 1 | 11
7
66
84
74 | 81
39
20 | L 6 4 51 | 6
105
15
17 | 44
67
43
7 | 58
13
7
7
19 | 44
31
131 | 26
20
49
59 | | Кь
(2) | 3 4 4 B 11 4 B 11 4 B 11 B 11 4 | 84
71
73
101
93 | 47
67
91
45 | 4 4 8 8 4
7 4 8 8 4 | 43
30
117
9 | 80
99
102
39
73 | 126
50
27
44
8 | 4 m m k d d d d d d d d d d d d d d d d d | 76
77
100
111 | | Ce
(20) | L20
98
51
131 | 77
74
81
82 | 73
77
77
81 | 74
179
75
91 | 100
112
188
38
110 | 183
94
120
53 | 229
156
143
60 | 311
101
22
112
71 | 50
97
70
118
69 | | La
(10) | L10
L10
84 | 49
41.
75
92 | 83.1
100
100 | L10
L10
35
28
L10 | 25
23
230
110 | 274
160
79
109 | 125
25
41
10 | 68
29
17
48
10 | 17
70
26
95
110 | | Ba
(15) | 52
62
46
554
419 | 55
45
45
45
45
45
45
45
45
45
45 | 290
462
462
331
376 | 535
398
371
419
345 | 367
144
651
149
274 | 351
959
462
443 | 759
220
159
624
115 | 581
193
86
394
372 | 959
705
562
608
500 | | 8n
(2) | 0 W 4 D U | пппппп | 00004 | 4 ክ ነን 4 ሀ | gnnga | првим | 4 N 4 N Y | บดหอบ | אטטטט | | Field # | DAB1
DAB2
DAB3
DAB4
DAB6 | DAB10
DAB11
DAB12
DAB13
DAB13 | DAB18
DAB19
DAB21
DAB22
DAB23 | DA10
DA13
DA46
DA48
DA50 | DA52
DA55
H25
H27
H28 | H29
H41
H42
D31 | 034
038
039
044
046 | D56
D63
D67
D71
D74 | D77
D80
D81
D82
D114 | | Lab # | AAM-55
AAM-56
AAM-57
AAM-58
AAM-60 | ААМ-63
ААМ-64
ААМ-65
ААМ-66
ААМ-66 | AAM-71
AAM-72
AAM-74
AAM-75
AAM-75 | ААМ-85
ААМ-88
ААМ-108
ААМ-110
ААМ-112 | AAM-114
AAM-117
ABG-003
ABG-005
ABG-005 | ABG-007
ABG-020
ABG-039
ABG-040
ABG-041 | ABO-042
ABO-046
ABO-047
ABO-049
ABO-050 | ABO-052
ABO-054
ABO-055
ABO-058
ABO-059 | ABO-061
ABO-063
ABO-065
ABO-066
ABO-075 | | Cr
(20) | 22
23
1.20
48 | 119
 20
 20
 24
 20 | L20
L20
L20
L20
L20 | 75
L20
87
97
L20 | 1.20
1.20
2.26
1.20
1.20 | 75
38
76
39
120 | 1.20
1.20
27
80
1.20 | 95
89
120
33 | 140
L20
175
72
L20 | |-------------|---|---|---|---|---|---|---|---|---| | Zn
(5) | 293
293
531
84 | 12
33
34
34
72 | 33
79
42
58
175 | 113
21
42
104
42 | 66
57
87
94
97 | 83
116
177
72
40 | 343
31
34
54 | 64
623
74
65
65 | 33
40
41
56 | | , Cu
(5) | 57
347
714
26
22 | 818
672
64
64 | 50
47
71
98
110 | 1
4 4
20 4 4 4 7 7 7 7 7 7 | 38
L5
179
34
23 | 61
59
94
L10
17 | 788
888
787
78 | 60
60
60
60
60
60
60
60
60
60
60
60
60
6 | 48
61
800
59
.61 | | NI
(5) | 50
10
58
8 | 49
42
34
46 | 36
23
28
64
222 | 116
56
51
36
10 | 11
155
155
14 | 55
68
83
83
83 | 29
38
50
166 | 36
30
6
21
14 | 26
26
27
22
66 | | Mo
(10) | | 110
 110
 110
 110 | C,C,C,C | [10
 [10
 [10
 [10 | L10
L10
L10
L10
L10 | | L10
L10
L10 | | 00000 | | 를
(2) | 7 2 3 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3
3
4
5
7
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8 | L5 7 8 7 35 | 11
11
12
14
14
18
18 | Na Bana
Bana a | 41
17
17
18
19
19 | 2 / B / G | 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | Zr
(10) | 741
65
350
131 | 136
68
65
65
58 | 54
112
59
84
148 | 288
233
191
311 | 513
168
102
281
346 | 276
308
259
164 | 90
88
80
146
112 | 431
229
106
536
255 | 48
255
207
237
78 | | ≻ છે | 28
15
48
7 | 36
12
13
15
15
15
15
15
15
15
15
15
15
15
15
15 | 18
58
16
74 | 174
26
22
45
51 | 62
10
10
10
10
10
10 | 08800 | 18
17
16
21
10 | 449
38
18
40
23 | 5
17
93
41 | | ارى)
(ق | 7
16
49
12
9 | 22 111 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | 24
30
16
18
18 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 47
47
47
31 | 17
34
6
9 | 18
28
14
6
47 | 39
186
150
280
30 | 5 2 4 5 5 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | | (5) | 15
26
97
24
57 | 11
18
9
11
26 | 27
84
55
71 | 388
222
80
80
99 | 70
47
13
87
104 | 54
111
51
41
40 | 39
105
14
43 |
70
56
34
60
49 | 6
2
143
143 | | Ce
(20) | 1022
1033
633
634 | 28
68
86
133 | 72
55
51
52 | 57
443
443
955
1355 | 105
51
32
97
83 | 239
75
105
62
92 | 115
73
73
90
84 | 88
999
79
74 | 41
134
57
440
84 | | La
(10) | 27
39
76
14
60 | L10
16
16
34
14 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 31
13
13
33
37 | L10
23
29
22 | 333
17
19
10 | 42
67
10
47
40 | L10
11
27
257
57 | | Ba
(15) | 423
198
843
394
214 | 188
454
383
323
439 | 458
905
408
878
252 | 158
398
643
581
1175 | 516
604
96
562
585 | 337
785
352
262
585 | 566
901
258
375
408 | 678
427
458
550
293 | 71
71
275
493
387 | | (의
(의 | 40000 | ьииди | N प प प प | 4 พ ผู ผ พ | N 0 10 4 4 | សស្សល្យ | рарда | 4 พ ผ ผ ผ | udu4u | | Field # | D112
D123
D125
D140
D160 | D166
D195
D198
D199
D200 | D201
DL1
DL4
DL5
DI6 | DIB
DFT
DFT
CM3 | CM17
CM44
CM48
CM54
CM55 | MCS
MCB
MC11
MC13
DCMS | DCM6
DCM7
DCM9
DCM11
DH2 | DH12
DH14
DH17
BL18
BL19 | BL21
BL22
BL23
EL35
CL1 | | Lab # | AB0-078
AB0-079
AB0-081
AB0-087
AB0-093 | ABO-094
ABO-097
AEO-100
ABO-101
ABO-102 | AB0-103
AAM-577
AAM-580
AAM-581
AAM-607 | AAM-609
AAM-611
AAN-613
101 AAM-619
AAN-622 | AAM-624
AAM-627
AAM-630
AAM-632
AAM-633 | AAM-637
AAM-640
AAM-643
AAM-645
AAM-645 | AAM-647
AAM-648
AAM-650
AAM-652
AAM-652 | AAM-662
AAM-664
AAM-507
AAM-507
AAM-508 | ААМ-510
ААМ-511
ААМ-515
ААМ-516
ААМ-516 | | Cr
(20) | 98
85
73
32
167 | 61
60
76
97
103 | 78
69
72
L20
99 | 38
62
57
89
62 | 102
91
81
31
88 | 79
44
39
50
101 | 100
92
88
72 | 76
73
72
L20
37 | L20
65
70
27
52 | |------------|---|---|---|---|---|--|---|---|---| | Zn
(5) | 175
124
118
35
67 | 65
198
182
131
209 | 154
21
106
143 | 66
70
124
226
199 | 192
97
126
73
209 | 152
72
75
114
155 | 100
124
154
138 | 155
135
169
27
88 | 66
143
144
99
160 | | Cu
(5) | 36
56
47
60
133 | 54
243
1100
45
29 | 37
16
137
10
89 | 37
12
49
579
49 | 278
25
188
15 | 50
105
69
112
65 | 53
50
142
138
192 | 69
98
95
11
49 | 69
62
98
21
L5 | | N.
(0) | 102
54
44
34
206 | 44
46
94
10
11 | 61
10
10
20
20 | 38
35
53
73 | 82
33
37
39
101 | 63
30
34
73
73 | 67
53
63
70
56 | 67
61
69
11 | 53
39
17
64 | | Mo
(10) | | | 10000 | L10
L10
31 | 00000 | | | | L10
L10
L10
L10 | | g S | 117 | 18
17
15
15 | 24
15
15
15
15
23 | 18
27
12
16
27 | 39
13
17
31 | 120
110
110
110
110 | 18
22
20
24
24 | 23
32
19 | 6
21
18
31
21 | | Zr
(10) | 262
281
425
221
71 | 405
604
170
175
333 | 347
438
60
121
431 | 588
849
333
168
329 | 454
220
1290
601
506 | 627
856
585
803
291 | 167
162
533
461
611 | 777
699
457
325
213 | 83
159
159
595 | | ≻ 🗓 | 48
82
57
13 | 20
62
67
60
121 | 568
12
23
27 | 26
71
59
76
37 | 102
147
67
28
89 | 71
72
30
44
72 | 92
104
65
72
71 | 75
58
71
11 | 31
36
64
81
50 | | Sr
(ප) | 37
19
6
6
5 | 15
20
32
36
36 | 55
17
10
11 | 50
10
10
10
10
10 | 24
45
78
88
88
89 | 22
16
16
16
16
16
16
16
16
16
16
16
16
16 | 58
171
23
23
27 | 20
9
9
9 | 17
29
79
13 | | 85
(2) | 84
73
68
9 | 43
76
91
108
108 | 119
26
39
58
50 | 26
86
170
90
117 | 66
66
24
82 | 267
25
37
117
221 | 170
167
73
70
68 | 77
53
132
48
160 | 94
148
172
97
201 | | Ce
(20) | 139
248
99
65
22 | 94
133
190
201
211 | 193
46
40
39
182 | 116
159
154
204
185 | 260
229
122
91
348 | 244
97
51
130
230 | 193
224
125
128
121 | 121
111
184
202
114 | 84
82
175
276
116 | | La
(10) | 116
103
58
22
56 | 20
62
130
189
140 | 145
L10
18
18 | 19
63
63
97
58 | 167
191
74
522
187 | 101
19
44
80
127 | 88
158
78
63 | 91
48
57
15
36 | 32
30
87
83 | | Ба
(15) | 888
888
888
884
78 | 252
493
816
550
635 | 574
168
132
179
504 | 163
1317
697
843
982 | 570
419
801
292
446 | 1074
351
269
635
1209 | 724
839
389
363 | 404
306
928
412
608 | 670
1125
943
262
1031 | | Sn
(2) | ppppp | 0 N 4 N 4 | พสสมพ | សស១ 4ស | ល្យស្ស | мамия | ១៧4។ | J
20040 | 0400 M | | Field # | CCL2
CL5
CL12
CL20 | CL33
CL34
CL35
CL36 | CL46
CL51
CL55
CL56
C8 | C12
C13
C16
C19
C31 | C34
C36
C37
C38
C42 | H H H H H H H H H H H H H H H H H H H | Н6
Н8
Н9
Н10 | H13
H15
H17
DA-113
DA-115 | DA-117
DA-120
DA-122
DA-123
DA-123 | | Lab # | AAM-519
AAM-520
AAM-524
AAM-529
AAM-532 | ААМ-538
ААМ-539
ААМ-540
ААМ-541
ААМ-541 | AAM-547
AAM-550
AAM-550
AAM-551
AAM-551 | AAM-557
AAM-558
AAM-560
AAM-563
AAM-563 | AAM-570
AAM-572
AAM-573
AAM-574
AAM-574 | AAM-680
AAM-681
AAM-682
AAM-683
AAM-683 | AAM-685
AAM-687
AAM-688
AAM-689
AAM-689 | AAM-692
AAM-694
AAM-696
ABU-080
ABU-082 | ABU-084
AEW-897
AEW-908
AEW-909
AEW-912 | Table 3, cont.